Skip to main content

Dopamine and Its Actions in the Basal Ganglia System

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

The dopaminergic system is implicated in a broad range of neurological syndromes, including Parkinson’s disease, dementia, dystonia, stuttering, depression, and schizophrenia. It is likely that systems-level computer simulations will guide future therapeutic interventions that seek to mitigate or counteract deficiencies or abnormalities in the dopaminergic system. In the absence of an arsenal of symptom-specific “magic bullet” pharmacotherapies that are fully effective, with no problematic side effects, it is likely that the best results will be obtained from therapies that combine drugs, drug cocktails, or focal surgical implants with specialized behavioral training regimes that promote function normalization via endogenous synaptic plasticity and learning. Developing such hybrid therapies will be aided by the kind of understanding that emerges from realistic simulations of the ramifying effects of system parameters and experiential regimes. After presenting a self-contained summary of dopamine actions at key sites within basal ganglia circuits, this chapter homes in on several themes that have emerged from recent studies, and that are likely to be critical for improved simulations of fundamental basal ganglia contributions to learning and performance, in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badrinarayan A, Wescott SA, Vander Weele CM (2012) Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell. J Neurosci 32(45):15779–15790

    Article  PubMed  PubMed Central  Google Scholar 

  • Belujon P, Grace AA (2015) Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc R Soc B 282:1–10

    Article  Google Scholar 

  • Berg BA, Schoenbaum G, McDannald MA (2014) The dorsal raphe nucleus is integral to negative prediction errors in Pavlovian fear. Eur J Neurosci 40(7):3096–3101

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27

    Article  PubMed  Google Scholar 

  • Bermudez MA, Schultz W (2014) Timing in reward and decision processes. Philos Trans R Soc Lond B Biol Sci 369:1–6

    Article  Google Scholar 

  • Berteau S, Mingolla E, Bullock D (2013) A biophysical perspective on cortical comparators in mismatch negativity. Paper presented at the cognitive neuroscience meeting, San Francisco

    Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  Google Scholar 

  • Bourdy R, Barrot M (2012) A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 35(11):681–690

    Article  PubMed  Google Scholar 

  • Brimblecombe KR, Cragg SJ (2015) Substance P weights striatal dopamine transmission differently within the striosome-matrix axis. J Neurosci 35(24):9017–9023

    Article  PubMed  PubMed Central  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI et al (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci 106:4894–4899

    Article  PubMed  PubMed Central  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks AM, Pammi VS, Noussair C (2010) From bad to worse: striatal coding of the relative value of painful decisions. Front Neurosci 4:1–8

    Article  Google Scholar 

  • Brown J, Bullock D, Grossberg S (1999) How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J Neurosci 19:10502–10511

    PubMed  Google Scholar 

  • Brown J, Bullock D, Grossberg S (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw 17:471–510

    Article  PubMed  Google Scholar 

  • Brown MTC, Tan KR, O’Connor EC et al (2013) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492:452–456

    Article  Google Scholar 

  • Budygin EA, Park J, Bass CE et al (2012) Aversive stimulus differentially triggers subsecond dopamine release in reward regions. Neuroscience 201:331–337

    Article  PubMed  Google Scholar 

  • Bullock D, St. Hilaire MA (2014) A neural model of sleep deprivation effects on motor preparation and response: simulating adenosinergic, dopaminergic and cholinergic effects. Abstracts of the Society for Neuroscience

    Google Scholar 

  • Bullock D, Tan CO, John YJ (2009) Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control. Neural Netw 22:757–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Cachope R, Cheer JF (2014) Local control of striatal dopamine release. Front Behav Neurosci 8:1–7

    Article  Google Scholar 

  • Choi JM, Padmala S, Spechler P et al (2014) Pervasive competition between threat and reward in the brain. Soc Cogn Affect Neurosci 9(6):737–750

    Article  PubMed  Google Scholar 

  • Civier A, Bullock D, Max L et al (2013) Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain Lang 126(3):263–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen JY, Haesler S, Vong L et al (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482(7383):85–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole S, McNally GP (2007) Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors. Behav Neurosci 121(5):1043–1052

    Article  PubMed  Google Scholar 

  • Colwill RM, Rescorla RA (1986) Associative structures in instrumental learning. Psychol Learn Motiv 20:55–104

    Article  Google Scholar 

  • Cone JJ, McCutcheon JE, Roitman MF (2014) Ghrelin acts as an interface between physiological state and phasic dopamine signaling. J Neurosci 34(14):4905–4913

    Article  PubMed  PubMed Central  Google Scholar 

  • Covey DP, Roitman MF, Garris PA (2014) Illicit dopamine transients: reconciling actions of abused drugs. Trends Neurosci 37(4):200–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Ostlund SB, James AS et al (2014) Targeted expression of μ-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nat Neurosci 17(2):254–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y et al (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448

    Article  PubMed  Google Scholar 

  • Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111:836–848

    Article  PubMed  Google Scholar 

  • Day HE, Nebel S, Sasse S et al (2005) Inhibition of the central extended amygdala by loud noise and restraint stress. Eur J Neurosci 21(2):441–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Day HE, Kryskow EM, Nyhuis TJ et al (2008) Conditioned fear inhibits c-fos mRNA expression in the central extended amygdala. Brain Res 1229:137–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Jones JL, Wightman RM et al (2010) Phasic nucleus accumbens dopamine release encodes effort- and delay-related costs. Biol Psychiatry 68(3):306–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Jones JL, Carelli RM (2011) Nucleus accumbens neurons encode predicted and ongoing reward costs in rats. Eur J Neurosci 33(2):308–321

    Article  PubMed  Google Scholar 

  • Delaville C, Deurwaerdère PD, Benazzouz A (2011) Noradrenaline and Parkinson’s disease. Front Syst Neurosci 5(31):1–12

    Google Scholar 

  • Delgado MR, Li J, Schiller D, Phelps EA (2008) The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc Lond B Biol Sci 363(1511):3787–3800

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson A, Balleine BB, Watt A et al (1995) Motivational control after extended instrumental training. Anim Learn Behav 23:197–206

    Article  Google Scholar 

  • Dougalis AG, Matthews GA, Bishop MW (2012) Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur J Neurosci 36(10):3322–3332

    Article  PubMed  PubMed Central  Google Scholar 

  • Dranias MR, Grossberg S, Bullock D (2008) Dopaminergic and non-dopaminergic value systems in conditioning and outcome-specific revaluation. Brain Res 1238:239–287

    Article  PubMed  Google Scholar 

  • Esber GR, Roesch MR, Bali S et al (2012) Attention-related Pearce-Kaye-Hall signals in basolateral amygdala require the midbrain dopaminergic system. Biol Psychiatry 72(12):1012–1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Esber GR, Torres-Tristani K, Holland PC (2015) Amygdalo-striatal interaction in the enhancement of stimulus salience in associative learning. Behav Neurosci 129(2):87–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50

    Article  PubMed  Google Scholar 

  • Faull RL, Dragunow M, Villiger JW (1989) The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment. Brain Res 488:381–386

    Article  PubMed  Google Scholar 

  • Fiorillo CD (2013) Two dimensions of value: dopamine neurons represent reward but not aversiveness. Science 341:546–549

    Article  PubMed  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    Article  PubMed  Google Scholar 

  • Fiorillo CD, Song MR, Yun SR (2013) Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli. J Neurosci 33(11):4710–4725

    Article  PubMed  Google Scholar 

  • Flores JA, Galan-Rodriguez B, Ramiro-Fuentes S et al (2006) Role for dopamine neurons of the rostral linear nucleus and periaqueductal gray in the rewarding and sensitizing properties of heroin. Neuropsychopharmacology 31(7):1475–1488

    Article  PubMed  Google Scholar 

  • Fox AS, Oler JA, Tromp DP et al (2015) Extending the amygdala in theories of threat processing. Trends Neurosci 38(5):319–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Fujiyama F, Sohn J, Nakano T et al (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33(4):668–677

    Article  PubMed  Google Scholar 

  • Fuxe K, Dahlström AB, Jonsson G et al (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90(2):82–100

    Article  PubMed  Google Scholar 

  • Gan JO, Walton ME, Phillips PE (2010) Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat Neurosci 13(1):25–27

    Article  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7(12):3915–3934

    PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  Google Scholar 

  • Gittis AH, Hang GB, LaDow ES et al (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Gore BB, Soden ME, Zweifel LS (2014) Visualization of plasticity in fear-evoked calcium signals in midbrain dopamine neurons. Learn Mem 21(11):575–579

    Article  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726

    Article  PubMed  PubMed Central  Google Scholar 

  • Grillner S, Robertson B (2015) The basal ganglia downstream control of brainstem motor centres—an evolutionarily conserved strategy. Curr Opin Neurobiol 33:47–52

    Article  PubMed  Google Scholar 

  • Gruber AJ, McDonald RJ (2012) Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 6(50):1–26

    Google Scholar 

  • Gurney KN, Humphries MD, Redgrave P (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol 13(1):1–25

    Article  Google Scholar 

  • Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33

    Article  PubMed  Google Scholar 

  • Haubensak W, Kunwar PS, Cai H et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7(6):617–627

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollon NG, Arnold MM, Gan JO et al (2014) Dopamine-associated cached values are not sufficient as the basis for action selection. Proc Natl Acad Sci U S A 111(51):18357–18362

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong S, Hikosaka O (2011) Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front Behav Neurosci 5(15):1–17

    Google Scholar 

  • Hornykiewcz O (1973) Dopamine in the basal ganglia. Its role and therapeutic implications. Br Med Bull 29:172–178

    Google Scholar 

  • Howland JG, Taepavarapruk P, Phillips AG (2002) Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J Neurosci 22(3):1137–1145

    PubMed  Google Scholar 

  • Ishikawa M, Otaka M, Huang YH et al (2013) Dopamine triggers heterosynaptic plasticity. J Neurosci 33(16):6759–6765

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito R, Dalley JW, Robbins TW et al (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30(5):188–193

    Article  PubMed  Google Scholar 

  • Jaunarajs KL, Bonsi P, Chesselet MF et al (2015) Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 127–128:91–107

    Article  Google Scholar 

  • Johansen JP, Tarpley JW, LeDoux JE et al (2010) Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat Neurosci 13:979–986

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JL, Day JJ, Aragona BJ et al (2010) Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol Psychiatry 67(8):737–744

    Article  PubMed  Google Scholar 

  • Kaneko S, Hikida T, Watanabe D et al (2000) Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289:633–637

    Article  PubMed  Google Scholar 

  • Krasne FB, Fanselow MS, Zelikowsky M (2011) Design of a neurally plausible model of fear learning. Front Behav Neurosci 5(41):1–23

    Google Scholar 

  • Linnet J (2014) Neurobiological underpinnings of reward anticipation and outcome evaluation in gambling disorder. Front Behav Neurosci 8(100):1–5

    Google Scholar 

  • Lloyd DR, Medina DJ, Hawk LW et al (2014) Habituation of reinforce effectiveness. Front Integr Neurosci 7:1–57

    Article  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202

    Article  PubMed  Google Scholar 

  • Matsuda W, Furuta T, Nakamura KC et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453

    Article  PubMed  Google Scholar 

  • Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459(7248):837–841

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Takada M (2013) Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 79(5):1011–1024

    Article  PubMed  Google Scholar 

  • McCarthy MM, Moore-Kochlacs C, Gu X et al (2011) Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Natl Acad Sci U S A 108:11620–11625

    Article  PubMed  PubMed Central  Google Scholar 

  • McHugh SB, Barkus C, Huber A et al (2014) Aversive prediction error signals in the amygdala. J Neurosci 34(27):9024–9033

    Article  PubMed  PubMed Central  Google Scholar 

  • McNally GP, Johansen JP, Blair HT (2011) Placing prediction into the fear circuit. Trends Neurosci 34:283–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416(6878):330–333

    Article  PubMed  Google Scholar 

  • Messanvi F, Eggens-Meijer E, Roozendaal B et al (2013) A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Front Neuroanat 7(41):1–14

    Google Scholar 

  • Mileykovskiy B, Morales M (2011) Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear. J Neurosci 31:7471–7476

    Article  PubMed  PubMed Central  Google Scholar 

  • Misu Y, Goshima Y, Ueda H et al (1996) Neurobiology of L-DOPAergic systems. Prog Neurobiol 49:415–454

    Article  PubMed  Google Scholar 

  • Misu Y, Goshima Y, Miyamae T (2002) Is DOPA a neurotransmitter? Trends Pharmacol Sci 23(6):262–268

    Article  PubMed  Google Scholar 

  • Monosov IE, Hikosaka O (2013) Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat Neurosci 16(6):756–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrens J (2014) Dopamine neurons coding prediction errors in reward space, but not in aversive space: a matter of location? J Neurophysiol 112(5):1021–1024

    Article  PubMed  Google Scholar 

  • Morris G, Arkadir D, Nevet A et al (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43:133–143

    Article  PubMed  Google Scholar 

  • Mott AM, Nunes EJ, Collins LE et al (2009) The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology (Berl) 204(1):103–112

    Article  Google Scholar 

  • Murtra P, Sheasby AM, Hunt SP et al (2000) Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405:180–183

    Article  PubMed  Google Scholar 

  • Namburi P, Beyeler A, Yorozu S et al (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520(7549):675–678

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasser HM, McNally GP (2013) Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning. Learn Mem 20(4):220–228

    Article  PubMed  Google Scholar 

  • Navratilova E, Xie JY, Okun A et al (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 109(50):20709–20713

    Article  PubMed  PubMed Central  Google Scholar 

  • Nutt DJ, Lingford-Hughes A, Erritzoe D (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16(5):305–312

    Article  PubMed  Google Scholar 

  • Orieux G, Francois C, Feger J et al (2002) Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J Neurosci 22:8762–8770

    PubMed  Google Scholar 

  • Ostlund SB, Wassum KM, Murphy NP et al (2011) Extracellular dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental conditioning. J Neurosci 31(1):200–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostlund SB, Kosheleff AR, Maidment NT (2012) Relative response cost determines the sensitivity of instrumental reward seeking to dopamine receptor blockade. Neuropsychopharmacology 37(12):2653–2660

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick S, Bullock D, Gorchetchnikov A et al (2014) Simulating conditions in which striatal learning assigns behavior control to the fastest-computed reward-predictive representations of cues and contexts. Abstr Soc Neurosci

    Google Scholar 

  • Penzo MA, Robert V, Li B (2014) Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J Neurosci 34(7):2432–2437

    Article  PubMed  PubMed Central  Google Scholar 

  • Penzo MA, Robert V, Tucciarone J et al (2015) The paraventricular thalamus controls a central amygdala fear circuit. Nature 519(7544):455–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Porras G, De Deurwaerdere P, Li Q et al (2014) L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 4:1–5

    Article  Google Scholar 

  • Poulin JF, Zou J, Drouin-Ouellet J et al (2014) Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep 9(3):930–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiner A (2009) You cannot have a vertebrate brain without a basal ganglia. In: Groenewegen HJ, Voorn P, Berendse HW, Mulder AB, Cools AR (eds) The basal ganglia IX, advances in behavioral biology, vol 58. Springer, New York, pp 3–24

    Chapter  Google Scholar 

  • Reiner A, Hart NM, Lei W et al (2010) Corticostriatal projection neurons—dichotomous types and dichotomous functions. Front Neuroanat 4:1–15

    Article  Google Scholar 

  • Reynolds JNJ, Wickens JR (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 15:507–521

    Article  PubMed  Google Scholar 

  • Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice ME, Patel JC, Cragg SJ (2011) Dopamine release in the basal ganglia. Neuroscience 198:112–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4:42–58

    Article  Google Scholar 

  • Roy M, Shohamy D, Daw N et al (2014) Representation of aversive prediction errors in the human periaqueductal gray. Nat Neurosci 17(11):1607–1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Salamone JD, Correa M, Mingote S et al (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    Article  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signals of dopamine neurons. J Neurophys 80:1–27

    Google Scholar 

  • Schultz W (2013) Updating dopamine reward signals. Curr Opin Neurobiol 23(2):229–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz W, Preuschoff K, Camerer C et al (2008) Explicit neural signals reflecting reward uncertainty. Philos Trans R Soc Lond B Biol Sci 363(1511):3801–3811

    Article  PubMed  PubMed Central  Google Scholar 

  • Sciamanna G, Ponterio G, Tassone A et al (2014) Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia. Neuropharmacology 85:440–450

    Article  PubMed  Google Scholar 

  • Sengupta A, McNally GP (2014) A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning. Front Behav Neurosci 8:1–7

    Article  Google Scholar 

  • Shaw VE, Keay KA, Ashkan K (2010) Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism Relat Disord 16(5):338–344

    Article  PubMed  Google Scholar 

  • Shen W, Flajolet M, Greengard P et al (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321(5890):848–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd GM (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14(4):278–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Shnitko TA, Robinson DL (2015) Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem Neurosci 6(1):147–154

    Article  PubMed  Google Scholar 

  • Smith Y, Wichmann T, DeLong MR (2014) Corticostriatal and mesocortical dopamine systems: do species differences matter? Nat Rev Neurosci. doi:10.1038/nrn3469-c1

    PubMed  Google Scholar 

  • Song MR, Fellous JM (2014) Value learning and arousal in the extinction of probabilistic rewards: the role of dopamine in a modified temporal difference model. PLoS One 9(2):1–12

    Google Scholar 

  • Sonomura T, Nakamura K, Furuta T et al (2007) Expression of D1 but not D2 dopamine receptors in striatal neurons producing neurokinin B in rats. Eur J Neurosci 26(11):3093–3103

    Article  PubMed  Google Scholar 

  • Steinberg EE, Boivin JR, Saunders BT et al (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9(4):1–9

    Article  Google Scholar 

  • Strausfeld NJ, Hirth F (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340(6129):157–161

    Article  PubMed  Google Scholar 

  • Surmeier DJ, Sulzer D (2013) The pathology roadmap in Parkinson disease. Prion 7(1):85–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16(20):6579–6591

    PubMed  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    Article  PubMed  Google Scholar 

  • Swanson LW (2005) Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol 493:122–131

    Article  PubMed  Google Scholar 

  • Taepavarapruk P, Howland JG, Ahn S et al (2008) Neural circuits engaged in ventral hippocampal modulation of dopamine function in medial prefrontal cortex and ventral striatum. Brain Struct Funct 213:183–195

    Article  PubMed  Google Scholar 

  • Tan CO, Bullock D (2008a) A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons. J Neurophysiol 100:2409–2421

    Article  PubMed  Google Scholar 

  • Tan CO, Bullock D (2008b) A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. J Neurosci 28:10062–10074

    Article  PubMed  Google Scholar 

  • Tan CO, Anderson ER, Dranias M et al (2008) Can the apparent adaptation of dopamine neurons’ mismatch sensitivities be reconciled with their computation of reward prediction errors? Neurosci Lett 438:14–16

    Article  PubMed  Google Scholar 

  • Tan KR, Yvon C, Turiault M et al (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73:1173–1183

    Article  PubMed  Google Scholar 

  • Threlfell S, Cragg SJ (2011) Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 5(11):1–10

    Google Scholar 

  • Threlfell S, Lalic T, Platt NJ et al (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75(1):58–64

    Article  PubMed  Google Scholar 

  • Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307:1642–1645

    Article  PubMed  Google Scholar 

  • Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23(3):324–329

    Article  PubMed  Google Scholar 

  • Wang Z, Kai L, Day M, Ronesi J et al (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50:443–452

    Article  PubMed  Google Scholar 

  • Watabe-Uchida M, Zhu L, Ogawa SK et al (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873

    Article  PubMed  Google Scholar 

  • Wickens JR, Budd CS, Hyland BI et al (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann N Y Acad Sci 1104:192–212

    Article  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–345

    Article  PubMed  Google Scholar 

  • Willuhn I, Burgeno LM, Everitt BJ et al (2012) Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci U S A 109(50):20703–20708

    Article  PubMed  PubMed Central  Google Scholar 

  • Yetnikoff L, Lavezzi HN, Reichard RA et al (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C:23–48

    Article  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ et al (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22(2):513–523

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res 166(2):189–196

    Article  PubMed  Google Scholar 

  • Zahm DS, Cheng AY, Lee TJ et al (2011) Inputs to the midbrain dopaminergic complex in the rat, with emphasis on extended amygdala-recipient sectors. J Comp Neurol 519:3159–3188

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Sulzer D (2012) Regulation of striatal dopamine release by presynaptic auto- and hetero-receptors. Basal Ganglia 2(1):5–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Zweifel LS, Fadok JP, Argilli E et al (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14:1–21

    Article  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH R01-DC007683 and NSF SBE-0354378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bullock Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bullock, D. (2016). Dopamine and Its Actions in the Basal Ganglia System. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_5

Download citation

Publish with us

Policies and ethics