Skip to main content

The Thalamostriatal System and Cognition

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

The basal ganglia play a critical role in a wide range of cognitive functions. Consequently, neurodegenerative diseases that affect the basal ganglia, such as Parkinson’s disease (PD) and Huntington’s disease (HD), are commonly associated with cognitive impairments. Although dysfunction of the relationships between the prefrontal cortex and the caudate nucleus is likely to be involved in these deficits, data collected over the past decade strongly suggest that the thalamostriatal system from the centromedian (CM) and parafascicular (PF) nuclei is another important regulator of cognitive functions in the basal ganglia. The fact that the CM/PF undergoes severe degeneration in HD and PD further supports the possible contribution of the thalamostriatal system pathology to cognitive dysfunctions in these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermans L, Temel Y, Cath D et al (2006) Deep brain stimulation in Tourette’s syndrome: two targets? Mov Disord 21:709–713

    Article  PubMed  Google Scholar 

  • Ackermans L, Temel Y, Visser-Vandewalle V (2008) Deep brain stimulation in Tourette’s syndrome. Neurotherapeutics 5:339–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackermans L, Duits A, Temel Y et al (2010) Long-term outcome of thalamic deep brain stimulation in two patients with Tourette syndrome. J Neurol Neurosurg Psychiatry 81:1068–1072

    Article  PubMed  Google Scholar 

  • Ackermans L, Duits A, van der Linden C et al (2011) Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain 134:832–844

    Article  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  Google Scholar 

  • Alloway KD, Smith JB, Watson GDR (2014) Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 111:36–50

    Article  PubMed  Google Scholar 

  • Bajwa RJ, de Lotbiniere AJ, King RA et al (2007) Deep brain stimulation in Tourette’s syndrome. Mov Disord 22:1346–1350

    Article  PubMed  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69

    Article  PubMed  Google Scholar 

  • Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199:43–52

    Article  PubMed  Google Scholar 

  • Barroso-Chinea P, Rico AJ, Conte-Perales L et al (2011) Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism. Brain Struct Funct. doi:10.1007/s00429-011-0317-x

    Google Scholar 

  • Beckstead RM (1984) The thalamostriatal projection in the cat. J Comp Neurol 223:313–346

    Article  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    Article  PubMed  Google Scholar 

  • Bradfield LA, Hart G, Balleine BW (2013a) The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Front Syst Neurosci 7:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradfield LA, Bertran-Gonzalez J, Chieng B et al (2013b) The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron 79:153–166

    Article  PubMed  Google Scholar 

  • Brooks D, Halliday GM (2009) Intralaminar nuclei of the thalamus in Lewy body diseases. Brain Res Bull 78:97–104

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1990) Cognitive function in Parkinson’s disease: from description to theory. Trends Neurosci 13:21–29

    Article  PubMed  Google Scholar 

  • Brown HD, Baker PM, Ragozzino ME (2010) The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci 30:14390–14398

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler AB (1994) The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev 19:66–101

    Article  PubMed  Google Scholar 

  • Caparros-Lefebvre D, Blond S, Feltin MP et al (1999) Improvement of levodopa induced dyskinesias by thalamic deep brain stimulation is related to slight variation in electrode placement: possible involvement of the centre median and parafascicularis complex. J Neurol Neurosurg Psychiatry 67:308–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevalier G, Deniau JM (1984) Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience 12:427–439

    Article  PubMed  Google Scholar 

  • Comans PE, Snow PJ (1981) Ascending projections to nucleus parafascicularis of the cat. Brain Res 230:337–341

    Article  PubMed  Google Scholar 

  • Cornwall J, Phillipson OT (1988) Afferent projections to the parafascicular thalamic nucleus of the rat, as shown by the retrograde transport of wheat germ agglutinin. Brain Res Bull 20:139–150

    Article  PubMed  Google Scholar 

  • Cowan WM, Powell TP (1956) A study of thalamo-striate relations in the monkey. Brain 79:364–390

    Article  PubMed  Google Scholar 

  • de Divitiis E, D’Errico A, Cerillo A (1977) Stereotactic surgery in Gilles de la Tourette syndrome. Acta Neurochir (Wien) 24:73

    Google Scholar 

  • de las Heras S, Mengual E, Velayos JL et al (1998) Re-examination of topographic distribution of thalamic neurons projecting to the caudate nucleus. A retrograde labeling study in the cat. Neurosci Res 31:283–293

    Google Scholar 

  • de las Heras S, Mengual E, Gimenez-Amaya JM (1999) Double retrograde tracer study of the thalamostriatal projections to the cat caudate nucleus. Synapse 32:80–92

    Google Scholar 

  • Deng YP, Wong T, Wan JY et al (2014) Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington’s disease. Front Syst Neurosci 8:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Deschenes M, Bourassa J, Parent A (1995) Two different types of thalamic fibers innervate the rat striatum. Brain Res 701:288–292

    Article  PubMed  Google Scholar 

  • Dimberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7:193–224

    Article  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD et al (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards SB, de Olmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165:417–431

    Article  PubMed  Google Scholar 

  • Ellender TJ, Harwood J, Kosillo P et al (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591:257–272

    Article  PubMed  Google Scholar 

  • Erro EM, Lanciego JL, Gimenez-Amaya JM (2002) Re-examination of the thalamostriatal projections in the rat with retrograde tracers. Neurosci Res 42:45–55

    Article  Google Scholar 

  • Fisher SD, Reynolds JN (2014) The intralaminar thalamus-an expressway linking visual stimuli to circuits determining agency and action selection. Front Behav Neurosci 8:115

    PubMed  PubMed Central  Google Scholar 

  • Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Villalba RM, Wichmann T, Smith Y (2016) The thalamostriatal systems in normal and diseased states. In: Steiner HZ, Tseng K-Y (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Gerrits NJ, Van der Werf YD, Verhoef KM et al (2015) Compensatory fronto-parietal hyperactivation during set-shifting in unmedicate patients with Parkinson’s disease. Neuropsychologia 68:107–116

    Article  PubMed  Google Scholar 

  • Gimenez-Amaya JM, McFarland NR, de las Heras S et al (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149

    Google Scholar 

  • Goldberg JA, Reynolds JN (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 198:27–43

    Article  PubMed  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155

    Article  PubMed  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res 199:53–60

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  PubMed  Google Scholar 

  • Grunwerg BS, Krauthamer GM (1992) Sensory responses of intralaminar thalamic neurons activated by the superior colliculus. Exp Brain Res 88:541–550

    Article  PubMed  Google Scholar 

  • Haber SN, Brucker JL (2009) Cognitive and limbic circuits that are affected by deep brain stimulation. Front Biosci 14:1823–1834

    Article  Google Scholar 

  • Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist 7:315–324

    Article  PubMed  Google Scholar 

  • Hallanger AE, Levey AI, Lee HJ et al (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    Article  PubMed  Google Scholar 

  • Halliday GM (2009) Thalamic changes in Parkinson’s disease. Parkinsonism Relat Disord 15:S152–S155

    Article  PubMed  Google Scholar 

  • Hariz MI, Robertson MM (2010) Gilles de la Tourette syndrome and deep brain stimulation. Eur J Neurosci 32:1128–1134

    Google Scholar 

  • Hassler R (1982) Stereotaxic surgery for psychiatric disturbances. In: Schaltenbrand G, Walker AE (eds) Stereotaxy of the human brain. Thieme-Stratton, New York, pp 570–590

    Google Scholar 

  • Hassler R, Dieckmann G (1970) Stereotaxic treatment of tics and inarticulate cries or coprolalia considered as motor obsessional phenomena in Gilles de la Tourette’s disease. Rev Neurol (Paris) 123:89–100

    Google Scholar 

  • Hassler R, Dieckmann G (1973) Relief of obsessive-compulsive disorders, phobias and tics by stereotactic coagulations of the rostral intralaminar and medial-thalamic nuclei. In: Laitinen LV, Livingston K (eds) Proceedings of the third international congress of psychosurgery. Garden City Press, Cambridge, pp 206–212

    Google Scholar 

  • Heinsen H, Rub U, Gangnus D et al (1996) Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington’s disease. Acta Neuropathol 91:161–168

    Article  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H et al (2000a) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123:1410–1421

    Article  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H et al (2000b) Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol 47:345–352

    Article  PubMed  Google Scholar 

  • Henderson JM, Schleimer SB, Allbutt H et al (2005) Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav Brain Res 162:222–232

    Article  PubMed  Google Scholar 

  • Herkenham M, Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 291:415–418

    Article  PubMed  Google Scholar 

  • Houeto JL, Karachi C, Mallet L et al (2005) Tourette’s syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry 76:992–995

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe MW, Atallah HE, McCool A et al (2011) Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci U S A 108:16801–16806

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichinohe N, Shoumura K (1998) A di-synaptic projection from the superior colliculus to the head of the caudate nucleus via the centromedian-parafascicular complex in the cat: an anterograde and retrograde labeling study. Neurosci Res 32:295–303

    Article  PubMed  Google Scholar 

  • Ichinohe N, Iwatsuki H, Shoumura K (2001) Intrastriatal targets of projection fibers from the central lateral nucleus of the rat thalamus. Neurosci Lett 302:105–108

    Article  PubMed  Google Scholar 

  • Iwai H, Kuramoto E, Yamanaka A et al (2015) Ascending parabrachio-thalamo-striatal pathways: potential circuits for integration of gustatory and oral functions. Neuroscience 294:1–13

    Article  PubMed  Google Scholar 

  • Jog MS, Kubota Y, Connolly CI et al (1999) Building neural representations of habits. Science 286:1745–1749

    Article  PubMed  Google Scholar 

  • Kato S, Kuramochi M, Kobayashi K et al (2011) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179

    Article  PubMed  Google Scholar 

  • Kim JP, Min HK, Knight EJ et al (2013) Centromedian-parafascicular deep brain stimulation induces differential functional inhibition of the motor, associative, and limbic circuits in large animals. Biol Psychiatry 74:917–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Minamimoto T, Matsumoto N et al (2004) Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system. Neurosci Res 48:355–360

    Article  PubMed  Google Scholar 

  • Kinomura S, Larsson J, Gulyas B et al (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515

    Article  PubMed  Google Scholar 

  • Krack P, Hariz MI, Baunez C et al (2010) Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 33:474–484

    Article  PubMed  Google Scholar 

  • Krout KE, Loewy AD, Westby GW et al (2001) Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 431:198–216

    Article  PubMed  Google Scholar 

  • Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312:1–18

    Article  PubMed  Google Scholar 

  • Liebermann D, Ostendorf F, Kopp UA et al (2013) Subjective cognitive-affective status following thalamic stroke. J Neurol 260:386–396

    Article  PubMed  Google Scholar 

  • Maciunas RJ, Maddux BN, Riley DE et al (2007) Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J Neurosurg 107:1004–1014

    Article  PubMed  Google Scholar 

  • Maling N, Hashemiyoon R, Foote KD et al (2012) Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette’s syndrome. PLoS One 7, e44215

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto N, Minamimoto T, Graybiel AM et al (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85:960–976

    PubMed  Google Scholar 

  • Mazzone P, Stocchi F, Galati S et al (2006) Bilateral implantation of centromedian-parafascicularis complex and GPi: a new combination of unconventional targets for deep brain stimulation in severe Parkinson disease. Neuromodulation 9:221–228

    Article  PubMed  Google Scholar 

  • McFarland NR, Haber SN (2001) Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol 429:321–336

    Article  PubMed  Google Scholar 

  • Mengual E, de las Heras S, Erro E et al (1999) Thalamic interaction between the input and the output systems of the basal ganglia. J Chem Neuroanat 16:187–200

    Google Scholar 

  • Mennemeier M, Crosson B, Williamson DJ et al (1997) Tapping, talking and the thalamus: possible influence of the intralaminar nuclei on basal ganglia function. Neuropsychologia 35:183–193

    Article  PubMed  Google Scholar 

  • Minamimoto T, Kimura M (2002) Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol 87:3090–3101

    PubMed  Google Scholar 

  • Minamimoto T, Hori Y, Kimura M (2005) Complementary process to response bias in the centromedian nucleus of the thalamus. Science 308:1798–1801

    Article  PubMed  Google Scholar 

  • Minamimoto T, Hori Y, Kimura M (2009) Roles of the thalamic CM-PF complex-basal ganglia circuit in externally driven rebias of action. Brain Res Bull 78:75–79

    Article  PubMed  Google Scholar 

  • Minamimoto T, Hori Y, Yamanaka K et al (2014) Neural signal for counteracting pre-action bias in the centromedian thalamic nucleus. Front Syst Neurosci 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mink JW (2006) Neurobiology of basal ganglia and Tourette syndrome: basal ganglia circuits and thalamocortical outputs. Adv Neurol 99:89–98

    PubMed  Google Scholar 

  • Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28:11221–11230

    Article  PubMed  Google Scholar 

  • Nakano K, Hasegawa Y, Tokushige A et al (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537:54–68

    Article  PubMed  Google Scholar 

  • Nanda B, Galvan A, Smith Y et al (2009) Effects of stimulation of the centromedian nucleus of the thalamus on the activity of striatal cells in awake rhesus monkeys. Eur J Neurosci 29:588–598

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuner I, Podoll K, Janouschek H et al (2009) From psychosurgery to neuromodulation: deep brain stimulation for intractable Tourette syndrome. World J Biol Psychiatry 10:366–376

    Article  PubMed  Google Scholar 

  • Newman DB, Ginsberg CY (1994) Brainstem reticular nuclei that project to the thalamus in rats: a retrograde tracer study. Brain Behav Evol 44:1–39

    Article  PubMed  Google Scholar 

  • O’Callaghan C, Bertoux M, Hornberger M (2014) Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry 85:371–378

    Article  PubMed  Google Scholar 

  • Pare D, Smith Y, Parent A et al (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. J Comp Neurol 481:127–144

    Article  PubMed  Google Scholar 

  • Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10:1137–1150

    Article  PubMed  Google Scholar 

  • Parent A, Pare D, Smith Y et al (1988) Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys. J Comp Neurol 277:281–301

    Article  PubMed  Google Scholar 

  • Peppe A, Gasbarra A, Stefani A et al (2008) Deep brain stimulation of CM/PF of thalamus could be the new elective target for tremor in advanced Parkinson’s disease? Parkinsonism Relat Disord 14:501–504

    Article  PubMed  Google Scholar 

  • Porta M, Brambilla A, Cavanna AE et al (2009) Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome. Neurology 73:1375–1380

    Article  PubMed  Google Scholar 

  • Powell TP, Cowan WM (1954) The connexions of the midline and intralaminar nuclei of the thalamus of the rat. J Anat 88:307–319

    PubMed  PubMed Central  Google Scholar 

  • Powell TPS, Cowan WM (1956) A study of thalamo-striate relations in the monkey. Brain 79:364–390

    Article  PubMed  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1991) Compartmental organization of the thalamostriatal connection in the cat. J Comp Neurol 311:134–167

    Article  PubMed  Google Scholar 

  • Raju DV, Shah DJ, Wright TM et al (2006) Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. J Comp Neurol 499:231–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Raju DV, Ahern TH, Shah DJ et al (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  • Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11:760–772

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiner A, Hart NM, Lei W, Deng Y (2010) Corticostriatal projection neurons—dichotomous types and dichotomous functions. Front Neuroanat 4:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice ME (2000) Distinct regional differences in dopamine-mediated volume transmission. Prog Brain Res 125:277–290

    Article  PubMed  Google Scholar 

  • Robbins TW, Cools R (2014) Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov Disord 29:597–607

    Article  PubMed  Google Scholar 

  • Royce GJ, Bromley S, Gracco C (1991) Subcortical projections to the centromedian and parafascicular thalamic nuclei in the cat. J Comp Neurol 306:129–155

    Article  PubMed  Google Scholar 

  • Sassi M, Porta M, Servello D (2011) Deep brain stimulation therapy for treatment-refractory Tourette’s syndrome: a review. Acta Neurochir(Wien) 153:639–645

    Google Scholar 

  • Savica R, Stead M, Mack KJ et al (2012) Deep brain stimulation in tourette syndrome: a description of 3 patients with excellent outcome. Mayo Clin Proc 87:59–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118

    Article  PubMed  Google Scholar 

  • Schiff ND (2009) Central thalamic deep-brain stimulation in the severely injured brain: rationale and proposed mechanisms of action. Ann N Y Acad Sci 1157:101–116

    Article  PubMed  Google Scholar 

  • Schiff ND (2013) Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state. Handb Clin Neurol 116:295–306

    Article  PubMed  Google Scholar 

  • Schiff ND, Giacino JT, Kalmar K et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603

    Article  PubMed  Google Scholar 

  • Servello D, Porta M, Sassi M et al (2008) Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J Neurol Neurosurg Psychiatry 79:136–142

    Article  PubMed  Google Scholar 

  • Servello D, Sassi M, Brambilla A et al (2010) Long-term, post-deep brain stimulation management of a series of 36 patients affected with refractory gilles de la tourette syndrome. Neuromodulation 13:187–194

    Article  PubMed  Google Scholar 

  • Shields DC, Cheng ML, Flaherty AW et al (2008) Microelectrode-guided deep brain stimulation for Tourette syndrome: within-subject comparison of different stimulation sites. Stereotact Funct Neurosurg 86:87–91

    Article  PubMed  Google Scholar 

  • Sidibe M, Smith Y (1996) Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. J Comp Neurol 365:445–465

    Article  PubMed  Google Scholar 

  • Sidibe M, Smith Y (1999) Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience 89:1189–1208

    Article  PubMed  Google Scholar 

  • Sidibe M, Bevan MD, Bolam JP et al (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382:323–347

    Article  PubMed  Google Scholar 

  • Sidibe M, Pare JF, Smith Y (2002) Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey. J Comp Neurol 447:286–299

    Article  PubMed  Google Scholar 

  • Smith Y, Parent A (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18:347–371

    Article  PubMed  Google Scholar 

  • Smith Y, Bennett BD, Bolam JP et al (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19

    Article  PubMed  Google Scholar 

  • Smith Y, Raju DV, Pare JF et al (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  PubMed  Google Scholar 

  • Smith Y, Raju D, Nanda B et al (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68

    Article  PubMed  Google Scholar 

  • Smith Y, Surmeier DJ, Redgrave P et al (2011) Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci 31:16102–16106

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Galvan A, Ellender TJ et al (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5

    PubMed  PubMed Central  Google Scholar 

  • Stefani A, Peppe A, Pierantozzi M et al (2009) Multi-target strategy for Parkinsonian patients: the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res Bull 78:113–118

    Article  PubMed  Google Scholar 

  • Stephenson-Jones M, Samuelsson E, Ericsson J et al (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21:1081–1091

    Article  PubMed  Google Scholar 

  • Steriade M, Glenn LL (1982) Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J Neurophysiol 48:352–371

    PubMed  Google Scholar 

  • Tanaka D Jr, Isaacson LG, Trosko BK (1986) Thalamostriatal projections from the ventral anterior nucleus in the dog. J Comp Neurol 247:56–68

    Article  PubMed  Google Scholar 

  • Temel Y, Visser-Vandewalle V (2004) Surgery in Tourette syndrome. Mov Disord 19:3–14

    Article  PubMed  Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541

    Article  PubMed  Google Scholar 

  • Vertes RP, Linley SB, Hoover WB (2010) Pattern of distribution of serotonergic fibers to the thalamus of the rat. Brain Struct Funct 215:1–28

    Article  PubMed  Google Scholar 

  • Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394

    Article  PubMed  Google Scholar 

  • Villalba RM, Mathai A, Smith Y (2015) Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease. Front Neuroanat 9:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Visser-Vandewalle V, Kuhn J (2013) Deep brain stimulation for Tourette syndrome. Handb Clin Neurol 116:251–258

    Article  PubMed  Google Scholar 

  • Visser-Vandewalle V, Temel Y, Boon P et al (2003) Chronic bilateral thalamic stimulation: a new therapeutic approach in intractable Tourette syndrome. Report of three cases. J Neurosurg 99:1094–1100

    Article  PubMed  Google Scholar 

  • Visser-Vandewalle V, Temel Y, van der Linden C et al (2004) Deep brain stimulation in movement disorders. The applications reconsidered. Acta Neurol Belg 104:33–36

    PubMed  Google Scholar 

  • Visser-Vandewalle V, Ackermans L, van der Linden C et al (2006) Deep brain stimulation in Gilles de la Tourette’s syndrome. Neurosurgery 58, E590

    Article  PubMed  Google Scholar 

  • Vogt C, Vogt O (1941a) Thalamusstudien I-III: I. Zur Einführung. II. Homogenität and Grenzgestaltung der Grisea des Thalamus. III. Das Griseum centrale (Centrum medianum Luys). J Psychol Neurol 50:32–154

    Google Scholar 

  • Vogt C, Vogt O (1941b) Thalamusstudien I-III. I. Zur Einfurung, II. Homogenitat und Grenzgestaldung der Grisea des Thalamus, III. Griseum centrale (centrum medianum Luys). J Physiol Neurol 50:31–154

    Google Scholar 

  • Wall NR, De La Parra M, Callaway EM et al (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79:347–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Xuereb JH, Perry RH, Candy JM et al (1991) Nerve cell loss in the thalamus in Alzheimer’s disease and Parkinson’s disease. Brain 114(pt 3):1363–1379

    PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health to YS and TW (R01 NS083386; P50NS071669) and the NIH infrastructure grant to the Yerkes National Primate Research Center (P51 OD011132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoland Smith Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smith, Y., Villalba, R., Galvan, A. (2016). The Thalamostriatal System and Cognition. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_4

Download citation

Publish with us

Policies and ethics