Advertisement

Limbic-Basal Ganglia Circuits Parallel and Integrative Aspects

  • Henk J. Groenewegen
  • Pieter Voorn
  • Jørgen Scheel-Krüger
Chapter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)

Abstract

Following the pioneering research of Walle Nauta and Lennart Heimer in the seventies of last century, it became increasingly accepted that the basal ganglia, next to motor functions, have an important role in cognitive, emotional, and motivational behavior. The ventral part of the striatum, prominently including the nucleus accumbens, plays a key role in this now well-accepted concept of the basal ganglia functions. The present chapter briefly reviews the early insights and subsequently focuses on the present view on the ‘limbic’ ventral striatum and its distinction from the dorsal striatum (caudate-putamen complex). However, with respect to many features, like cytoarchitecture, connectivity, and histochemical composition, the dorsal and ventral striatum show strong parallels. Distinctive for the ventral striatum are the strong inputs from limbic structures like the basal amygdala, hippocampus, and entorhinal cortex. Furthermore, medial and lateral prefrontal areas project heavily to the ventral striatum. Also subcortical inputs, like those from the ventral tegmental area, raphe nuclei, locus coeruleus, and midline thalamic nuclei, are rather specific for subregions in the ventral striatum. The heterogeneity of the mesencephalic projections, including dopaminergic, glutamatergic, GABAergic, cholinergic, and serotonergic fibers, is being discussed. Like in the dorsal striatum, GABAergic and cholinergic interneurons via their afferents from prefrontal cortex and thalamus form important links in modulating and synchronizing the activity of the medium-size spiny output neurons. The interneurons in the ventral striatum are mostly comparable in their architecture and physiological properties with their counterparts in the dorsal striatum, but there appear to be also some subtle differences. The output of the ventral striatum reaches several basal forebrain structures, like the ventral pallidum, parts of the extended amygdala, lateral preoptic and lateral hypothalamic areas and, finally, different nuclei in the mesencephalon like the ventral tegmental area, substantia nigra, and the midbrain extrapyramidal area. Taking into account the projections from the main target of the ventral striatum, i.e., the ventral pallidum, it is clear that the ‘limbic’, ventral striatum contributes to an extended basal ganglia circuitry that involves the return projections to the prefrontal cortex via various thalamic nuclei, projections to the ventral mesencephalon, potentially influencing the monoaminergic ascending projection systems, as well as a loop through the lateral hypothalamic-lateral habenula circuitry, which has a role in regulating both the dopaminergic and serotonergic cell groups via the GABAergic neurons in the rostromedial tegmental nucleus (RMTg) in the ventral mesencephalon. Finally, some functional aspects and future perspectives are being discussed.

Keywords

Basal ganglia-thalamocortical circuits Limbic-motor interaction Nucleus accumbens Habenula Mesolimbic dopamine system 

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  2. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  3. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog Brain Res 85:119–146PubMedCrossRefGoogle Scholar
  4. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedCrossRefGoogle Scholar
  5. Aoki C, Pickel VM (1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann N Y Acad Sci 611:186–205PubMedCrossRefGoogle Scholar
  6. Aosaki T, Miura M, Suzuki T et al (2010) Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int 10(suppl 1):S148–S157PubMedCrossRefGoogle Scholar
  7. Asher A, Lodge DJ (2012) Distinct prefrontal cortical regions negatively regulate evoked activity in nucleus accumbens subregions. Int J Neuropsychopharmacol 15:1287–1294PubMedCrossRefGoogle Scholar
  8. Barnes KA, Cohen AL, Power JD et al (2010) Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Front Syst Neurosci 4:18. doi: 10.3389/fnsys.2010.00018 PubMedPubMedCentralGoogle Scholar
  9. Barrot M, Sesack SR, Georges F et al (2012) Braking dopamine systems: a new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci 32:14094–15101PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441PubMedCrossRefGoogle Scholar
  11. Bennett BD, Bolam JP (1994) Synaptic input and output of parvalbumin-immunoreactive neurones in the neostriatum of the rat. Neuroscience 62:707–719PubMedCrossRefGoogle Scholar
  12. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228PubMedCrossRefGoogle Scholar
  13. Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347PubMedCrossRefGoogle Scholar
  14. Berridge CW, Stratford TL, Foote SL et al (1997) Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241PubMedCrossRefGoogle Scholar
  15. Bolam JP, Hanley JJ, Booth PAC et al (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York, p 690Google Scholar
  17. Brog JS, Salypongse A, Deutch AY et al (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278PubMedCrossRefGoogle Scholar
  18. Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine induced neurotoxicity. J Neurosci 20:1952–1963PubMedGoogle Scholar
  19. Brown MT, Tan KR, O’Connor EC et al (2012) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492:452–456PubMedCrossRefGoogle Scholar
  20. Calhoon GG, O’Donnell P (2013) Closing the gate in the limbic striatum: prefrontal suppression of hippocampal and thalamic inputs. Neuron 78:2181–2190CrossRefGoogle Scholar
  21. Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carlzon WA, Thomas MJ (2009) Biological substrates for reward and aversion: a nucleus accumbens activity hypothesis. Neuropsychopharmacology 56:122–132Google Scholar
  23. Castro DC, Cole SL, Berridge KC (2015) Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 9(90):1–17Google Scholar
  24. Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445PubMedCrossRefGoogle Scholar
  25. Chuhma N, Choi WY, Mingote S et al (2009) Dopamine neuron glutamate cotransmission: frequency-dependent modulation in the mesoventromedial projection. Neuroscience 164:1068–1083PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chuhma N, Mingote S, Moore H et al (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81:901–912PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50:873–880PubMedCrossRefGoogle Scholar
  28. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784PubMedCrossRefGoogle Scholar
  29. Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–694PubMedCrossRefGoogle Scholar
  30. Dautan D, Huerta-Ocampo I, Witten IB et al (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518PubMedPubMedCentralCrossRefGoogle Scholar
  31. Delfs JM, Zhu Y, Druhan JP et al (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140PubMedCrossRefGoogle Scholar
  32. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMedCrossRefGoogle Scholar
  33. DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Handbook of physiology, vol 2, The nervous system. American Physiological Society, Bethesda, pp 1017–1062Google Scholar
  34. Ding JB, Guzman JN, Peterson JD et al (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307PubMedPubMedCentralCrossRefGoogle Scholar
  35. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in the Mouse striatum. J Neurosci 30:14610–14618PubMedCrossRefGoogle Scholar
  36. Dudman JT, Gerfen CR (2015) The basal ganglia. In: Paxinos G (ed) The rat nervous system, 4th edn. Elsevier, Amsterdam, pp 391–440CrossRefGoogle Scholar
  37. Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013PubMedGoogle Scholar
  38. Everitt BJ, Robbins TW (2015) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. doi: 10.1146/annurev-psych-122414-033457 PubMedGoogle Scholar
  39. Feekes JA, Cassell MD (2006) The vascular supply of the functional compartments of the human striatum. Brain 129:2189–2201PubMedCrossRefGoogle Scholar
  40. Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263PubMedGoogle Scholar
  41. Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66:25–52PubMedCrossRefGoogle Scholar
  42. Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365PubMedCrossRefGoogle Scholar
  43. Friedman A, Homma D, Gibb LG et al (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fudge JL, Breitbart MA, McClain C (2004) Amygdaloid inputs define a caudal component of the ventral striatum in primates. J Comp Neurol 476:330–347PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gage GJ, Stoetzner CR, Wiltschko AB et al (2010) Selective activation of striatal fast-spiking interneurons during choice execution. Neuron 67:466–467PubMedPubMedCentralCrossRefGoogle Scholar
  46. Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat—anatomical substratum for integrative functions. J Comp Neurol 490:270–294PubMedCrossRefGoogle Scholar
  47. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320PubMedCrossRefGoogle Scholar
  48. Gernert M, Hamann M, Bennay M et al (2000) Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 20:7052–7058PubMedGoogle Scholar
  49. Gill KM, Grace AA (2011) Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens. Int J Neuropsychopharmacol 14:1301–1314PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gittis AH, Nelson AB, Thwin MT et al (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gonçalves L, Sego C, Metzger M (2012) Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol 520:1278–1300PubMedCrossRefGoogle Scholar
  52. Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1–45PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gonzales KK, Pare JF, Wichmann T et al (2013) GABAergic inputs from direct and indirect projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 5212:2502–2522CrossRefGoogle Scholar
  54. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRefGoogle Scholar
  55. Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726PubMedPubMedCentralCrossRefGoogle Scholar
  56. Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431PubMedCrossRefGoogle Scholar
  57. Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294:607–622PubMedCrossRefGoogle Scholar
  58. Groenewegen HJ, Berendse HW (1994) The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57PubMedCrossRefGoogle Scholar
  59. Groenewegen HJ, Uylings HBM (2010) Organization of prefrontal-striatal connections. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function: a decade of progress. Academic, San Diego, pp 353–365CrossRefGoogle Scholar
  60. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A et al (1987) Organization of the projections from the subiculum to the ventral striatum in the rat: a study using anterograde transport of Phaseolus vulgaris-leucoagglutinin. Neuroscience 23:103–120PubMedCrossRefGoogle Scholar
  61. Groenewegen HJ, Berendse HW, Wolters JG et al (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–118PubMedCrossRefGoogle Scholar
  62. Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142PubMedCrossRefGoogle Scholar
  63. Groenewegen HJ, Wright CI, Beijer AVJ (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511PubMedCrossRefGoogle Scholar
  64. Groenewegen HJ, Wright CI, Beijer AV et al (1999a) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63PubMedCrossRefGoogle Scholar
  65. Groenewegen HJ, Mulder AB, Beijer AVJ et al (1999b) Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology 27:149–164Google Scholar
  66. Groenewegen HJ, Galis-de Graaf Y, Smeets WJAJ (1999c) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16:167–185PubMedCrossRefGoogle Scholar
  67. Haber SN, Behrens TE (2014) The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83:1019–1039PubMedPubMedCentralCrossRefGoogle Scholar
  68. Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74PubMedCrossRefGoogle Scholar
  69. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382PubMedGoogle Scholar
  70. Haber SN, Kim KS, Mailly P et al (2007) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. Eur J Neurosci 26:2005–2024PubMedPubMedCentralCrossRefGoogle Scholar
  71. Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 33:4804–4814PubMedPubMedCentralCrossRefGoogle Scholar
  72. Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN (2016) Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry pii: S0006-3223(16)32388–5. doi: 10.1016/j.biopsych.2016.05.012. [Epub ahead of print]
  73. Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium: perspectives in neurobiology. Raven, New York, pp 177–193Google Scholar
  74. Heimer L, Zahm DS, Churchill L et al (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125PubMedCrossRefGoogle Scholar
  75. Heimer L, Alheid GF, de Olmos JS et al (1997) The accumbens, beyond the core-shell dichotomy. J Neuropsychiatr Clin Neurosci 9:354–381CrossRefGoogle Scholar
  76. Heimer L, De Olmos JS, Alheid GF et al (1999) The human basal forebrain. Part II. In: Bloom FE, Bjorkland A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 57–226Google Scholar
  77. Hikosaka O, Kim HF, Yasuda M et al (2014) Basal ganglia circuits for reward value-guided behavior. Annu Rev Neurosci 37:289–306PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hnasko TS, Chuhma N, Zhang H et al (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656PubMedPubMedCentralCrossRefGoogle Scholar
  79. Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417PubMedCrossRefGoogle Scholar
  80. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ikemoto S, Yang C, Tan A (2015) Basal ganglia circuit loops, dopamine and motivation: a review and inquiry. Behav Brain Res 290:17–31PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jeon HA, Anwander A, Friederici AD (2014) Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. J Neurosci 34:9202–9212PubMedCrossRefGoogle Scholar
  83. Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379PubMedCrossRefGoogle Scholar
  84. Jung WH, Jang JH, Park JW et al (2014) Unraveling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state fMRI. PLoS One 9(9), e106768. doi: 10.1371/journal.pone.0106768 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kalanithi PS, Zheng W, Kataoka Y et al (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 102:13307–13312PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kelley AE (1999) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27:198–213Google Scholar
  87. Kerfoot EC, Chattillion EA, Williams CL (2008) Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol Learn Mem 89:47–60PubMedCrossRefGoogle Scholar
  88. Kim HF, Hikosaka O (2013) Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79:1001–1010PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kim HF, Hikosaka O (2015) Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138:1776–1800PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578–592PubMedCrossRefGoogle Scholar
  91. Kotz S, Anwander A, Axer H et al (2014) Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus. PLos One 8(7), e70141. doi: 10.1371/journal.pone.0070141 CrossRefGoogle Scholar
  92. Kupchik YM, Brown RM, Heinsbroek JA et al (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lammel S, Lim BK, Ran C et al (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76(Pt B):351–359PubMedCrossRefGoogle Scholar
  95. Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545PubMedCrossRefGoogle Scholar
  96. Lehericy S, Ducros M, Krainik A et al (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections in the human striatum. Cereb Cortex 14:1302–1309PubMedCrossRefGoogle Scholar
  97. Mailly P, Haber SN, Groenewegen HJ et al (2010) A 3D multi-model and multidimensional digital brain model as a framework for data sharing. J Neurosci Methods 194:56–63PubMedCrossRefGoogle Scholar
  98. Mailly P, Aliane V, Groenewegen HJ et al (2013) The rat prefrontal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33:5718–5727PubMedCrossRefGoogle Scholar
  99. Mallet N, Le Moine C, Charpier S et al (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869PubMedCrossRefGoogle Scholar
  100. Mallet N, Ballion B, Le Moine C et al (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884PubMedCrossRefGoogle Scholar
  101. Matsumoto M, Hikosaka O (2008) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12:77–84PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6:358–370PubMedCrossRefGoogle Scholar
  103. Meredith GE, Wouterlood FG (1990) Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study. J Comp Neurol 296:204–221PubMedCrossRefGoogle Scholar
  104. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425PubMedCrossRefGoogle Scholar
  105. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRefGoogle Scholar
  106. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 43:111–117PubMedCrossRefGoogle Scholar
  107. Nauta WJH (1986) Circuitrous connections linking cerebral cortex, limbic system, and corpus striatum. In: Doane DK, Livingstone KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 43–54Google Scholar
  108. Nauta WJH, Smith GP, Faull RL et al (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385–401PubMedCrossRefGoogle Scholar
  109. Nelson AB, Hammack N, Yang CF et al (2014) Striatal cholinergic interneurons drive GABA release from dopaminergic terminals. Neuron 82:63–70PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580PubMedCrossRefGoogle Scholar
  111. Parent A, Hazrati L-N (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127PubMedCrossRefGoogle Scholar
  112. Parent A, Hazrati L-N (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154PubMedCrossRefGoogle Scholar
  113. Parthasarathy HB, Graybiel AM (1997) Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J Neurosci 17:2477–2491PubMedGoogle Scholar
  114. Peciña S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786PubMedCrossRefGoogle Scholar
  115. Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761PubMedCrossRefGoogle Scholar
  116. Pennartz CM, Berke JD, Graybiel AM et al (2009) Corticosriatal interactions during learning, memory processing, and decision making. J Neurosci 29:8965–8976PubMedCrossRefGoogle Scholar
  117. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:1508–1521PubMedCrossRefGoogle Scholar
  118. Ramanathan S, Hanley JJ, Deniau JM et al (2002) Synaptic convergence of motor and somatosensory afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22:8158–8169PubMedGoogle Scholar
  119. Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023PubMedCrossRefGoogle Scholar
  120. Reep RL, Cheatwood JL, Corwin JV (2003) The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467:271–292PubMedCrossRefGoogle Scholar
  121. Richard JM, Castro DC, Difeliceantonio AG et al (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37:1919–1931PubMedCrossRefGoogle Scholar
  122. Rye DB, Saper CB, Lee HJ et al (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528PubMedCrossRefGoogle Scholar
  123. Satoh K, Fibiger HC (1986) Cholinergic neurons in the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302PubMedCrossRefGoogle Scholar
  124. Schilman EA, Uylings HBM, Galis-de Graaf Y et al (2008) The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci Lett 432:40–45PubMedCrossRefGoogle Scholar
  125. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794PubMedGoogle Scholar
  126. Sherman D, Fuller PM, Marcus J et al (2015) Anatomical location of the mesencephalic locomotor region and its possible role in locomotion, posture, cataplexy, and Parkinsonism. Front Neurol 6:140. doi: 10.3389/fneur.2015.00140 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Smith Y, Raju DV, Pare JF et al (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527PubMedCrossRefGoogle Scholar
  128. Smith Y, Raju D, Nanda B et al (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68PubMedCrossRefGoogle Scholar
  129. Stefanik MT, Kupchik YM, Brown RM et al (2013) Optogenetic evidence that pallidal projections, not nigral projections, from the nucleus accumbens core are necessary for reinstating cocaine seeking. J Neurosci 33:13654–13662PubMedPubMedCentralCrossRefGoogle Scholar
  130. Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiatry 29:177–189PubMedCrossRefGoogle Scholar
  131. Stoessl AJ, Lehericy S, Strafella AP (2014) Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet 384:532–544PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stopper CM, Floresco SB (2014) What’s better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat Neurosci 17:33–35PubMedCrossRefGoogle Scholar
  133. Stuber GD, Hnasko TS, Britt JP et al (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233PubMedPubMedCentralCrossRefGoogle Scholar
  134. Taverna S, Canciani B, Pennartz CM (2007) Membrane properties and synaptic connectivity of fast-spiking interneurons in rat ventral striatum. Brain Res 1152:49–56PubMedCrossRefGoogle Scholar
  135. Taylor SR, Badurek S, Dileone RJ et al (2014) GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 522:3308–3334PubMedPubMedCentralCrossRefGoogle Scholar
  136. Temel Y, Blokland A, Steinbusch HW et al (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76:393–413PubMedCrossRefGoogle Scholar
  137. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692PubMedCrossRefGoogle Scholar
  138. Threlfell S, Craig SJ (2011) Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 5(11):149–158. doi: 10.3389/fnsys.2011.00011 Google Scholar
  139. Tong J, Hornykiewicz O, Kish S (2005) Identification of a noradrenalin-rich subdivision of the human nucleus accumbens. J Neurochem 96:349–354PubMedCrossRefGoogle Scholar
  140. Totterdell S, Meredith GE (1997) Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience 78:715–729PubMedCrossRefGoogle Scholar
  141. Tremblay L, Worbe Y, Thobois S et al (2015) Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord 30:1155–1170PubMedCrossRefGoogle Scholar
  142. Tripathi A, Prensa L, Cebrián C et al (2010) Axonal branching patterns of nucleus accumbens neurons in the rat. J Comp Neurol 518:4649–4673PubMedCrossRefGoogle Scholar
  143. Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218:1133–1157PubMedCrossRefGoogle Scholar
  144. Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266PubMedPubMedCentralCrossRefGoogle Scholar
  145. Turnstall MJ, Oorschot DE, Kean A et al (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88:1263–1269Google Scholar
  146. Van Dongen YC, Deniau JM, Pennartz CMA et al (2005) Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens. Neuroscience 136:1049–1071PubMedCrossRefGoogle Scholar
  147. Van Dongen YC, Kolomiets BP, Groenewegen HJ, Thierry AM, Deniau JM (2009) A subpopulation of mesencephalic dopamine neurons interfaces the shell of nucleus accumbens and dorsolateral striatum in rats. In: Groenewegen HJ, Voorn P, Berendse HW, Mulder AB, Cools AR (eds) The Basal Ganglia IX, Advances Behavioral Biology 58. Springer, New York, pp 119–130Google Scholar
  148. Van Zessen R, Philips JL, Budygin EA et al (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184–1194PubMedPubMedCentralCrossRefGoogle Scholar
  149. Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107PubMedPubMedCentralCrossRefGoogle Scholar
  150. Voorn P (2010) Pallido-striatal connections. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function: a decade of progress. Academic, San Diego, pp 249–257CrossRefGoogle Scholar
  151. Voorn P, Jorritsma-Byham B, Van Dijk C et al (1986) The dopaminergic innervation of the ventral striatum in the rat: a light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99PubMedCrossRefGoogle Scholar
  152. Voorn P, Gerfen CR, Groenewegen HJ (1989) The compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium binding protein. J Comp Neurol 289:189–201PubMedCrossRefGoogle Scholar
  153. Voorn P, Vanderschuren LJMJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474PubMedCrossRefGoogle Scholar
  154. Willner P, Scheel-Kruger J, Belzung C (2013) The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 37:2331–2371PubMedCrossRefGoogle Scholar
  155. Wouterlood FG, Hartig W, Groenewegen HJ, Voorn P (2012) Density gradients of vesicular glutamate- and GABA transporter-immunoreactive boutons in calbindin and μ-opioid receptor-defined compartments in the rat striatum. J Comp Neurol 520:2123–2142PubMedCrossRefGoogle Scholar
  156. Wright CI, Beijer AV, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 16:1877–1893PubMedGoogle Scholar
  157. Wright AK, Norrie L, Ingham CA et al (1999) Double anterograde tracing of outputs from adjacent “barrel columns” of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 88:119–133PubMedCrossRefGoogle Scholar
  158. Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63PubMedCrossRefGoogle Scholar
  159. Yetnikoff L, Lavezzi HN, Reichard RA et al (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C:23–48CrossRefGoogle Scholar
  160. Yetnikoff L, Cheng AY, Lavezzi HN et al (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523:2426–2456PubMedPubMedCentralCrossRefGoogle Scholar
  161. Záborszky L, Alheid GF, Beinfeld MC et al (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14:427–453PubMedCrossRefGoogle Scholar
  162. Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105PubMedCrossRefGoogle Scholar
  163. Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767PubMedCrossRefGoogle Scholar
  164. Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302:437–446PubMedCrossRefGoogle Scholar
  165. Zahm DS, Parsley KP, Schwartz ZM et al (2013) On the lateral septum-like characteristics of outputs from the accumbal hedonic “hotspot” of Peciña and Berridge with commentary on the translational nature of basal forebrain “boundaries”. J Comp Neurol 521:50–68PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87:1007–1017PubMedGoogle Scholar
  167. Zhou W, Liu H, Zhang F, Tang S, Zhu H, Lai M, Kalivas PW (2007) Role of acetylcholine transmission in nucleus accumbens and ventral tegmental area in heroin-seeking induced by conditioned cues. Neuroscience 144:1209–1218Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Henk J. Groenewegen
    • 1
  • Pieter Voorn
    • 1
  • Jørgen Scheel-Krüger
    • 2
  1. 1.Department of Anatomy and NeurosciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Center of Functionally Integrative Neuroscience (CFIN), University of AarhusAarhusDenmark

Personalised recommendations