Skip to main content

Neural Dynamics of the Basal Ganglia During Perceptual, Cognitive, and Motor Learning and Gating

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

This article summarizes neural models that simulate how the basal ganglia contribute to associative and reinforcement learning, and to movement gating, in multiple brain systems. The first model proposes how the substantia nigra pars compacta (SNc) generates widespread dopaminergic learning signals in response to unexpected rewarding cues, including a circuit for adaptively timed learning using metabotropic glutamate receptor (mGluR)-mediated Ca2+ spikes that occur with different delays in striosomal cells. Similar circuits for spectral timing occur in cerebellum and hippocampus. The TELOS model shows how the substantia nigra pars reticulata (SNr) learns to selectively gate saccadic eye movements or cognitive plans, and how spatially invariant object categories can activate spatially variant representations to control specific actions. The VITE model proposes how basal ganglia gating controls selection and variable speeds of arm movements. The cARTWORD model explains how prefrontally controlled basal ganglia gates can explain phonemic restoration, notably how future context can influence how past sounds are consciously heard. The MOTIVATOR model clarifies how the basal ganglia and amygdala coordinate their complementary functions to control learning and performance of motivated acts. The lisTELOS model proposes how sequences of saccades can be learned and performed from an Item-Order-Rank spatial working memory under the control of three parallel basal ganglia loops. Basal ganglia gating in the regulation of working memory storage, visual imagery, useful field of view, thinking, planning, and Where’s Waldo searching are also discussed, as is how its breakdown can lead to hallucinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggleton JP (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 16:328–333

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1:266–271

    Article  Google Scholar 

  • Alexander GE, DeLong M, Strick PL (1996) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  Google Scholar 

  • Andersen RA, Snyder LH, Bradley BC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Article  PubMed  Google Scholar 

  • Averbeck B, Chafee M, Crowe D, Georgopoulos A (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci 99:13172–13177

    Article  PubMed  PubMed Central  Google Scholar 

  • Averbeck B, Chafee M, Crowe D, Georgopoulos A (2003) Neural activity in prefrontal cortex during copying geometrical shapes. I. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150:127–141

    Article  PubMed  Google Scholar 

  • Bar M, Tootell RBH, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit object recognition. Neuron 29:529–535

    Article  PubMed  Google Scholar 

  • Barbas H (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev 19:499–510

    Article  PubMed  Google Scholar 

  • Barbas H, Pandya D (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–228

    Article  PubMed  Google Scholar 

  • Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319

    PubMed  Google Scholar 

  • Berdyyeva T, Olson C (2009) Monkey supplementary eye field neurons signal the ordinal position of both actions and objects. J Neurosci 29:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt R, Carpenter G, Grossberg S (2007) Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vis Res 47:3173–3211

    Article  PubMed  Google Scholar 

  • Bichot NP, Schall JD, Thompson KG (1996) Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381:697–699

    Article  PubMed  Google Scholar 

  • Brown J, Bullock D, Grossberg S (1999) How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J Neurosci 19:10502–10511

    PubMed  Google Scholar 

  • Brown J, Bullock D, Grossberg S (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw 17:471–510

    Article  PubMed  Google Scholar 

  • Bullier J, Hupe JM, James A, Girard P (1996) Functional interactions between areas V1 and V2 in the monkey. J Physiol Paris 90:217–220

    Article  PubMed  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95:49–90

    Article  PubMed  Google Scholar 

  • Bullock D, Grossberg S (1991) Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Hum Mov Sci 10:3–53

    Article  Google Scholar 

  • Bullock D, Cisek P, Grossberg S (1998) Cortical networks for control of voluntary arm movements under variable force conditions. Cereb Cortex 8:48–62

    Article  PubMed  Google Scholar 

  • Bullock D, Grossberg S, Guenther FH (1993) A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm. J Cogn Neurosci 5:408–435

    Article  PubMed  Google Scholar 

  • Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862

    Article  PubMed  Google Scholar 

  • Cao Y, Grossberg S (2005) A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis. Spat Vis 18:515–578

    Article  PubMed  Google Scholar 

  • Cao Y, Grossberg S, Markowitz J (2011) How does the brain rapidly learn and reorganize view- and positionally-invariant object representations in inferior temporal cortex? Neural Netw 24:1050–1061

    Article  PubMed  Google Scholar 

  • Carpenter GA, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vis Graph Image Process 37:54–115

    Article  Google Scholar 

  • Carpenter GA, Grossberg S (1991) Pattern recognition by self-organizing neural networks. MIT Press, Cambridge

    Google Scholar 

  • Chang H-C, Grossberg S, Cao Y (2014) Where’s Waldo? How perceptual cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene. Front Integr Neurosci. doi:10.3389/fnint.2014.0043

    Google Scholar 

  • Cohen MA, Grossberg S (1986) Neural dynamics of speech and language coding: developmental programs, perceptual grouping, and competition for short-term memory. Hum Neurobiol 5:1–22

    PubMed  Google Scholar 

  • Cohen MA, Grossberg S (1987) Masking fields: a massively parallel neural architecture for learning, recognizing, and predicting multiple groupings of patterned data. Appl Opt 26:1866–1891

    Article  PubMed  Google Scholar 

  • Contreras-Vidal JL, Grossberg S, Bullock D (1997) A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics. Learn Mem 3:475–502

    Article  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci 25:962–70

    Article  PubMed  Google Scholar 

  • Crosson B (1985) Subcortical functions in language: a working model. Brain Lang 25:257–292

    Article  PubMed  Google Scholar 

  • Damasio AR (1999) The feeling of what happens: body and emotion in the making of consciousness. Houghton Mifflin Harcourt, Boston

    Google Scholar 

  • Desimone R (1998) Visual attention mediated by biased competition in extrastriate visual cortex. Philos Trans R Soc Lond B 353:1245–1255

    Article  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837

    Article  PubMed  Google Scholar 

  • Dickinson A, Balleine BW (2001) The role of learning in the operation of motivational systems. In: Pashler HE, Gallistel R (eds) Steven’s handbook of experimental psychology, 3rd edn. Wiley, New York, pp 497–533

    Google Scholar 

  • Dormont J, Conde H, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121:401–410

    Article  PubMed  Google Scholar 

  • Dranias M, Grossberg S, Bullock D (2008) Dopaminergic and non-dopaminergic value systems in conditioning and outcome-specific revaluation. Brain Res 1238:239–287

    Article  PubMed  Google Scholar 

  • Eichenbaum H, Lipton PA (2008) Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. Hippocampus 18:1314–1324

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewert JP, Schurg-Pfeiffer E, Schwippert WW (1996) Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses. Acta Biol Hung 47:89–111

    PubMed  Google Scholar 

  • Fang L, Grossberg S (2009) From stereogram to surface: How the brain sees the world in depth. Spatial Vision 22:45–82.

    Article  PubMed  Google Scholar 

  • Farrell S, Lewandowsky S (2004) Modelling transposition latencies: constraints for theories of serial order memory. J Mem Lang 51:115–135

    Article  Google Scholar 

  • Fazl A, Grossberg S, Mingolla E (2009) View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds. Cogn Psychol 58:1–48

    Article  PubMed  Google Scholar 

  • Fiala JC, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye blink response. J Neurosci 16:3760–3774

    PubMed  Google Scholar 

  • Foley NC, Grossberg S, Mingolla E (2012) Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding. Cogn Psychol 65:77–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between the frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci 1:137–160

    Article  PubMed  Google Scholar 

  • Gancarz G, Grossberg G (1998) A neural model of the saccade generator in the reticular formation. Neural Netw 11:1159–1174

    Article  PubMed  Google Scholar 

  • Gancarz G, Grossberg S (1999) A neural model of the saccadic eye movement control explains task-specific adaptation. Vis Res 39:3123–3143

    Article  PubMed  Google Scholar 

  • Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063

    Article  PubMed  Google Scholar 

  • Gaudiano P, Grossberg S (1991) Vector associative maps: unsupervised real-time error-based learning and control of movement trajectories. Neural Netw 4:147–183

    Article  Google Scholar 

  • Gaudiano P, Grossberg S (1992) Adaptive vector integration to endpoint: self-organizing neural circuits for control of planned movement trajectories. Hum Mov Sci 11:141–155

    Article  Google Scholar 

  • Gaymard B, Pierrot-Deseilligny C, Rivaud S (1990) Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann Neurol 28:622–626

    Article  PubMed  Google Scholar 

  • Gaymard B, Rivaud S, Pierrot-Deseilligny C (1993) Role of the left and right supplementary motor areas in memory-guided saccade sequences. Ann Neurol 34:404–406

    Article  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsama FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423:52–77

    Article  PubMed  Google Scholar 

  • Gorchetchnikov A, Grossberg S (2007) Space, time, and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control. Neural Netw 20:182–193

    Article  PubMed  Google Scholar 

  • Gove A, Grossberg S, Mingolla E (1995) Brightness perception, illusory contours, and corticogeniculate feedback. Vis Neurosci 12:1027–1052

    Article  PubMed  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res 199:53–60

    Article  PubMed  Google Scholar 

  • Green CS, Bavelier D (2003) Action video game modifies visual selective attention. Nature 423:534–537

    Article  PubMed  Google Scholar 

  • Green CS, Bavelier D (2007) Action-video-game experience alters the spatial resolution of vision. Psychol Sci 18:88–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross CG, Desimone R, Albright TD, Schwartz EL (1985) Inferior temporal cortex and pattern recognition. Exp Brain Res Suppl 11:179–201

    Article  Google Scholar 

  • Grossberg S (1971) On the dynamics of operant conditioning. J Theor Biol 33:225–255

    Article  PubMed  Google Scholar 

  • Grossberg S (1972a) A neural theory of punishment and avoidance, I: qualitative theory. Math Biosci 15:39–67

    Article  Google Scholar 

  • Grossberg S (1972b) A neural theory of punishment and avoidance, II: quantitative theory. Math Biosci 15:253–285

    Article  Google Scholar 

  • Grossberg S (1973) Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud Appl Math 52(3):213–257

    Article  Google Scholar 

  • Grossberg S (1975) A neural model of attention, reinforcement, and discrimination learning. Int Rev Neurobiol 18:263–327

    Article  PubMed  Google Scholar 

  • Grossberg S (1978a) A theory of human memory: self-organization and performance of sensory-motor codes, maps, and plans. In: Rosen R, Snell F (eds) Progress in theoretical biology, vol 5. Academic, New York, pp 233–374

    Chapter  Google Scholar 

  • Grossberg S (1978b) Behavioral contrast in short term memory: serial binary memory models or parallel continuous memory models. J Math Psychol 17:199–219

    Google Scholar 

  • Grossberg S (1982) Processing of expected and unexpected events during conditioning and attention: a psychophysiological theory. Psychol Rev 89:529–572

    Article  PubMed  Google Scholar 

  • Grossberg S (1984) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In: Karrer R, Cohen J, Tueting P (eds) Brain and information: event related potentials. New York Academy of Sciences, New York, pp 58–142

    Google Scholar 

  • Grossberg S (1986) The adaptive self-organization of serial order in behavior: speech, language, and motor control. In: Schwab EC, Nusbaum HC (eds) Pattern recognition by humans and machines, Vol. 1: speech perception. Academic, New York, pp 187–294

    Chapter  Google Scholar 

  • Grossberg S (1999) The link between brain learning, attention, and consciousness. Conscious Cogn 8:1–44

    Article  PubMed  Google Scholar 

  • Grossberg S (2000a) How hallucinations may arise from brain mechanisms of learning, attention, and volition. J Int Neuropsychol Soc 6:579–588

    Article  Google Scholar 

  • Grossberg S (2000b) The complementary brain: unifying brain dynamics and modularity. Trends Cogn Sci 4:233–246

    Article  PubMed  Google Scholar 

  • Grossberg S (2000c) The imbalanced brain: from normal behavior to schizophrenia. Biol Psychiatry 48:81–98

    Article  PubMed  Google Scholar 

  • Grossberg S (2003) Resonant neural dynamics of speech perception. J Phon 31:423–445

    Article  Google Scholar 

  • Grossberg S (2009) Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion, and action. Philos Trans R Soc Lond 364:1223–1234

    Article  Google Scholar 

  • Grossberg S (2013) Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw 37:1–47

    Article  PubMed  Google Scholar 

  • Grossberg S (2016) Towards solving the hard problem of consciousness: the varieties of brain resonances and the conscious experiences that they support. Submitted for publication

    Google Scholar 

  • Grossberg S, Gutowski WE (1987) Neural dynamics of decision making under risk: affective balance and cognitive-emotional interactions. Psychol Rev 94:300–318

    Google Scholar 

  • Grossberg S, Kazerounian S (2011) Laminar cortical dynamics of conscious speech perception: a neural model of phonemic restoration using subsequent context in noise. J Acoust Soc Am 130:440–460

    Article  PubMed  Google Scholar 

  • Grossberg S, Kuperstein M (1989) Neural dynamics of adaptive sensory-motor control: expanded edition. Pergamon Press, Elmsford

    Google Scholar 

  • Grossberg S, Levine DS (1987) Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, inter-stimulus interval, and secondary reinforcement. Appl Opt 26:5015–5030

    Article  PubMed  Google Scholar 

  • Grossberg S, Merrill JWL (1992) A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Cogn Brain Res 1:3–38

    Article  Google Scholar 

  • Grossberg S, Merrill JWL (1996) The hippocampus and cerebellum in adaptively timed learning, recognition, and movement. J Cogn Neurosci 8:257–277

    Article  PubMed  Google Scholar 

  • Grossberg S, Myers CW (2000) The resonant dynamics of speech perception: interword integration and duration-dependent backward effects. Psychol Rev 107:735–767

    Article  PubMed  Google Scholar 

  • Grossberg S, Paine RW (2000) A neural model of corticocerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Netw 13:999–1046

    Article  PubMed  Google Scholar 

  • Grossberg S, Pearson L (2008) Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: toward a unified theory of how the cerebral cortex works. Psychol Rev 115:677–732

    Article  PubMed  Google Scholar 

  • Grossberg S, Pilly PK (2012) How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map. PLoS Comput Biol 8(10):31002648. doi:10.1371/journal.pcbi.1002648

    Article  Google Scholar 

  • Grossberg S, Pilly PK (2014) Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention, and oscillations. Philos Trans R Soc 369:20120524

    Article  Google Scholar 

  • Grossberg S, Repin DV (2003) A neural model of how the brain represents and compares multi-digit numbers: spatial and categorical processes. Neural Netw 16:1107–1140

    Article  PubMed  Google Scholar 

  • Grossberg S, Schmajuk NA (1987) Neural dynamics of attentionally-modulated Pavlovian conditioning: conditioned reinforcement, inhibition, and opponent processing. Psychobiology 15:195–240

    Google Scholar 

  • Grossberg S, Schmajuk NA (1989) Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw 2:79–102

    Article  Google Scholar 

  • Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113:483–525

    Article  PubMed  Google Scholar 

  • Grossberg S, Versace M (2008) Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Res 1218:278–312

    Article  PubMed  Google Scholar 

  • Grossberg S, Vladusich T (2010) How do children learn to follow gaze, share joint attention, imitate their teachers, and use tools during social interactions? Neural Netw 23:940–965

    Article  PubMed  Google Scholar 

  • Grossberg S, Boardman I, Cohen C (1997a) Neural dynamics of variable-rate speech categorization. J Exp Psychol Hum Percept Perform 23:418–503

    Article  Google Scholar 

  • Grossberg S, Roberts K, Aguilar M, Bullock D (1997b) A neural model of multimodal adaptive saccadic eye movement control by superior colliculus. J Neurosci 17:9706–9725

    PubMed  Google Scholar 

  • Grossberg S, Bullock D, Dranias M (2008) Neural dynamics underlying impaired autonomic and conditioned responses following amygdala and orbitofrontal lesions. Behav Neurosci 122:1100–1125

    Article  PubMed  Google Scholar 

  • Grossberg S, Markowitz J, Cao Y (2011) On the road to invariant recognition: explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning. Neural Netw 24:1036–1049

    Article  PubMed  Google Scholar 

  • Grossberg S, Srihasam K, Bullock D (2012) Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets. Neural Netw 27:1–20

    Article  PubMed  Google Scholar 

  • Grossberg S, Yazdanbakhsh A (2005) Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading. Vis Res 45:1725–1743

    Article  PubMed  Google Scholar 

  • Guenther FH (1995) Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychol Rev 102:594–621

    Article  PubMed  Google Scholar 

  • Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301

    Article  PubMed  Google Scholar 

  • Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455–472

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  PubMed  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    PubMed  Google Scholar 

  • Heide W, Binkofski F, Seitz R, Posse S, Nitschke M, Freund H, Kömpf D (2001) Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci 13:1177–1189

    Article  PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol 49:1285–1301

    PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1989) The basal ganglia. In: Wurtz R, Goldberg M (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam, pp 257–281

    Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989a) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61:780–798

    PubMed  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989b) Functional properties of monkey caudate neurons I. Activities related to saccadic eye movements. J Neurophysiol 61:780–798

    PubMed  Google Scholar 

  • Histed MH, Miller EK (2006) Microstimulation of frontal cortex can reorder a remembered spatial sequence. PLoS Biol 4(5):e134

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollerman J, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304–309

    Article  PubMed  Google Scholar 

  • Horak FB, Anderson ME (1984) Influence of globus pallidus on arm movements in monkeys, II. Effects of stimulation. J Neurophysiol 52:305–322

    PubMed  Google Scholar 

  • Houghton G (1990) The problem of serial order: a neural network model of sequence learning and recall. In: Dale R, Mellish C, Zock M (eds) Current research in natural language generation. Academic Press Professional, San Diego, pp 287–319

    Google Scholar 

  • Huerta M, Kaas J (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    Article  PubMed  Google Scholar 

  • Isoda M, Tanji J (2002) Cellular activity in the supplementary eye field during sequential performance of multiple saccades. J Neurophysiol 88:3541–3545

    Article  PubMed  Google Scholar 

  • Isoda M, Tanji J (2003) Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades. J Neurophysiol 90:3054–3065

    Article  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2001) The neural basis of biased competition in human visual cortex. Neuropsychologia 39:1263–1276

    Article  PubMed  Google Scholar 

  • Kemel ML, Desban M, Gauchy C, Glowinski J, Besson MJ (1988) Topographical organization of efferent projections from the cat substantia nigra pars reticulata. Brain Res 455:307–323

    Article  PubMed  Google Scholar 

  • Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867

    PubMed  Google Scholar 

  • Komatsu H, Ideura Y (1993) Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 70:677–694

    PubMed  Google Scholar 

  • Lashley K (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. Wiley, New York, pp 112–131

    Google Scholar 

  • LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    Article  PubMed  Google Scholar 

  • Lee C, Rohrer W, Sparks D (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360

    Article  PubMed  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67:145–163

    PubMed  Google Scholar 

  • MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal ‘time cells’ bridge the gap in memory for discontiguous events. Neuron 71:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin O, Sweets WJ, Gonzalez A (1998) Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians. Trends Neurosci 21:487–494

    Article  PubMed  Google Scholar 

  • Middleton F, Strick P (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  Google Scholar 

  • Mink J (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  PubMed  Google Scholar 

  • Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 3:950–957

    Article  PubMed  Google Scholar 

  • Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024–1027

    PubMed  Google Scholar 

  • Nakamura K, Ono T (1986) Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals. J Neurophysiol 55:163–181

    PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Ottes F, Van Gisbergen J, Eggermont J (1984) Metrics of saccade responses to visual double stimuli: two different modes. Vis Res 24:1169–1179

    Article  PubMed  Google Scholar 

  • Pasupathy A, Miller EK (2004) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876

    Article  Google Scholar 

  • Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B (1996) Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16:3714–3726

    PubMed  Google Scholar 

  • Pilly PK, Grossberg S (2012) How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells. J Cogn Neurosci 24:1031–1054

    Article  PubMed  Google Scholar 

  • Pilly PK, Grossberg S (2013) Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells. PLoS One 8(4):e60599. http://dx.plos.org/10.1371/journal.pone.0060599

    Google Scholar 

  • Raizada R, Grossberg S (2003) Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cereb Cortex 13:100–113

    Article  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    Article  PubMed  Google Scholar 

  • Salin P, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154

    PubMed  Google Scholar 

  • Samuel A (1981a) Phonemic restoration: insights from a new methodology. J Exp Psychol Hum Percept Perform 4:474–494

    Google Scholar 

  • Samuel A (1981b) The role of bottom-up confirmation in the phonemic restoration illusion. J Exp Psychol Hum Percept Perform 7:1124–1131

    Article  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867

    Article  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  Google Scholar 

  • Schultz W, Apicelli P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    PubMed  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    PubMed  Google Scholar 

  • Schultz W, Romo R, Ljungberg T, Mirenowicz J, Hollerman J, Dickinson A (1995) Reward-related signals carried by dopamine neurons. In: Houk J, Davis J, Beiser D (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, pp 11–27

    Google Scholar 

  • Schultz W, Dayan P, Montague P (1997) A neural substrate of prediction and reward. Science 275:1593–1598

    Article  PubMed  Google Scholar 

  • Sears LL, Finn PR, Steinmetz JE (1994) Abnormal classical eye-blink conditioning in autism. J Autism Dev Disord 24:737–751

    Article  PubMed  Google Scholar 

  • Setlow B, Gallagher M, Holland PC (2002a) The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur J Neurosci 15:1841–1853

    Article  PubMed  Google Scholar 

  • Setlow B, Holland PC, Gallagher M (2002b) Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive Pavlovian second-order conditioned responses. Behav Neurosci 116:267–275

    Article  PubMed  Google Scholar 

  • Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320

    Article  PubMed  Google Scholar 

  • Silver MR, Grossberg S, Bullock D, Histed MH, Miller EK (2011) A neural model of sequential movement planning and control of eye movements: item-order-rank working memory and saccade selection by the supplementary eye fields. Neural Netw 26:29–58

    Article  PubMed  Google Scholar 

  • Srihasam K, Bullock D, Grossberg S (2009) Target selection by frontal cortex during coordinated saccadic and smooth pursuit eye movements. J Cogn Neurosci 21:1611–1627

    Article  PubMed  Google Scholar 

  • Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  PubMed  Google Scholar 

  • Takakusaki K, Shiroyama T, Kitai S (1997) Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79:1089–1109

    Article  PubMed  Google Scholar 

  • Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:170–189

    PubMed  Google Scholar 

  • Warren RM (1970) Perceptual restoration of missing speech sounds. Science 167:392–393

    Article  PubMed  Google Scholar 

  • Warren R (1984) Perceptual restoration of obliterated sounds. Psychol Bull 96:371–383

    Article  PubMed  Google Scholar 

  • Warren R, Obusek C (1971) Speech perception and phonenemic restorations. Percept Psychophys 9:358–362

    Article  Google Scholar 

  • Warren R, Sherman A (1974) Phonemic restorations based on subsequent context. Percept Psychophys 16:150–156

    Article  Google Scholar 

  • Warren R, Warren R (1970) Auditory illusions and confusions. Sci Am 223:30–36

    Article  PubMed  Google Scholar 

  • Yang S, Heinen S, Missal M (2008) The effects of microstimulation of the dorsomedial frontal cortex on saccade latency. J Neurophysiol 99:1857–1870

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Grossberg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grossberg, S. (2016). Neural Dynamics of the Basal Ganglia During Perceptual, Cognitive, and Motor Learning and Gating. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_19

Download citation

Publish with us

Policies and ethics