Skip to main content

The Subthalamic Nucleus and Reward-Related Processes

  • Chapter
  • First Online:
Book cover The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

Considered for a long time a simple relay structure on the so-called indirect pathway of the motor loop within the basal ganglia, the subthalamic nucleus is now considered a critical node in the reward circuitry. This chapter discusses recent evidence for this role in both the animal and clinical literature. There is converging recent evidence to suggest that inactivating this structure could represent an interesting strategy for the treatment of certain forms of reward-related dysfunctions, including drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absher HR, Vogt BA, Clark DG et al (2000) Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 13(3):220–229

    PubMed  Google Scholar 

  • Afsharpour S (1985a) Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol 236(1):1–13

    Article  PubMed  Google Scholar 

  • Afsharpour S (1985b) Topographical projections of the cerebral cortex to the subthalamic nucleus. J Comp Neurol 236(1):14–28

    Article  PubMed  Google Scholar 

  • Agid Y, Arnulf I, Bejjani P, Bloch F, Bonnet AM, Damier P, Dubois B, François C, Houeto JL, Iacono D, Karachi C, Mesnage V, Messouak O, Vidailhet M, Welter ML, Yelnik J (2003) Parkinson’s disease is a neuropsychiatric disorder. Adv Neurol 91:365–370

    PubMed  Google Scholar 

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300

    Article  PubMed  Google Scholar 

  • Akakin A, Yilmaz BY, Urgun K et al (2014) Hypersexuality after bilateral deep brain stimulation of the subthalamic nucleus for Parkinson’s disease. Neurol India 62:233–234

    Article  PubMed  Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452

    Article  PubMed  PubMed Central  Google Scholar 

  • Bannier S, Montaurier C, Derost PP et al (2009) Overweight after deep brain stimulation of the subthalamic nucleus in Parkinson disease: long term follow-up. J Neurol Neurosurg Psychiatry 80:484–488

    Article  PubMed  Google Scholar 

  • Baracz SJ, Cornish JL (2013) Oxytocin modulates dopamine-mediated reward in the rat subthalamic nucleus. Horm Behav 63:370–375

    Article  PubMed  Google Scholar 

  • Baracz SJ, Rourke PI, Pardey MC et al (2012) Oxytocin directly administered into the nucleus accumbens core or subthalamic nucleus attenuates methamphetamine-induced conditioned place preference. Behav Brain Res 228:185–193

    Article  PubMed  Google Scholar 

  • Barichella M, Marczewska AM, Mariani C et al (2003) Body weight gain rate in patients with Parkinson’s Disease and deep brain stimulation. Mov Disord 18:1337–1340

    Article  PubMed  Google Scholar 

  • Barutca S, Turgut M, Meydan N, Ozsunar Y (2003) Subthalamic nucleus tumor causing hyperphagia—case report. Neurol Med Chir (Tokyo) 43(9):457–460

    Article  Google Scholar 

  • Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9(10):2086–2099

    Article  PubMed  Google Scholar 

  • Baunez C, Amalric M, Robbins TW (2002) Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci 22:562–568

    PubMed  Google Scholar 

  • Baunez C, Dias C, Cador M, Amalric M (2005) The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat Neurosci 8:484–489

    PubMed  Google Scholar 

  • Benazzouz A, Gross C, Feger J et al (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389

    Article  PubMed  Google Scholar 

  • Benazzouz A, Boraud T, Féger J et al (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11(6):627–632

    Article  PubMed  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  PubMed  Google Scholar 

  • Beurrier C, Bezard E, Bioulac B, Gross C (1997) Subthalamic stimulation elicits hemiballismus in normal monkey. Neuroreport 8(7):1625–1629

    Article  PubMed  Google Scholar 

  • Bevan MD, Francis CM, Bolam JP (1995) The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals. J Comp Neurol 361(3):491–511

    Article  PubMed  Google Scholar 

  • Bezzina G, Boon FS, Hampson CL et al (2008) Effect of quinolinic acid-induced lesions of the subthalamic nucleus on performance on a progressive-ratio schedule of reinforcement: a quantitative analysis. Behav Brain Res 195(2):223–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman EM, Brown VJ (1998) Effects of excitotoxic lesions of the rat ventral striatum on the perception of reward cost. Exp Brain Res 123(4):439–448

    Article  PubMed  Google Scholar 

  • Breysse E, Pelloux Y, Baunez C (2015) The good and bad differentially encoded within the subthalamic nucleus in rats. eNeuro 15:2(5)

    Google Scholar 

  • Carson DS, Hunt GE, Guastella AJ et al (2010) Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus. Addict Biol 15:448–463

    Article  PubMed  Google Scholar 

  • Chabardes S, Polosan M, Krack P et al (2013) Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target. World Neurosurg 80(3-4):S31.e31–8. doi:10.1016/j.wneu.2012.03.010

    Google Scholar 

  • Coizet V, Graham JH, Moss J et al (2009) Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J Neurosci 29(17):5701–5709

    Article  PubMed  PubMed Central  Google Scholar 

  • Darbaky Y, Baunez C, Arecchi P et al (2005) Reward related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport 16(11):1241–1244

    Article  PubMed  Google Scholar 

  • Degos B, Deniau JM, Le Cam J et al (2008) Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur J Neurosci 27(10):2599–2610

    Article  PubMed  Google Scholar 

  • Dudek M, Abo-Ramadan U, Hermann D, Brown M, Canals S, Sommer WH, Hyytia P (2015) Brain activation induced by voluntary alcohol and saccharin drinking in rats assessed with manganese-enhanced magnetic resonance imaging. Addict Biol 20(6):1012–1021. doi:10.1111/adb.12179

    Article  PubMed  Google Scholar 

  • Espinosa-Parrilla JF, Baunez C, Apicella P (2015) Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. Eur J Neurosci 42(1):1705–1717

    Article  PubMed  Google Scholar 

  • Eusebio A, Witjas T, Cohen J, Fluchère F, Jouve E, Régis J, Azulay JP (2013) Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 84(8):868–874

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294(4):607–622

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–116

    Article  PubMed  Google Scholar 

  • Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C (2009) Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol 89(1):79–123

    Article  PubMed  Google Scholar 

  • Hachem-Delaunay S, Fournier ML, Cohen C, Bonneau N, Cador M, Baunez C, Le Moine C (2015) Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiol Dis 80:54–62

    Article  PubMed  Google Scholar 

  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(1):4–20

    Article  PubMed  Google Scholar 

  • Hammond C, Yelnik J (1983) Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8(4):781–790

    Article  PubMed  Google Scholar 

  • Hammond C, Rouzaire-Dubois B, Feger J et al (1983) Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience 9(1):41–52

    Article  PubMed  Google Scholar 

  • Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134(3483):943–944

    Article  PubMed  Google Scholar 

  • Inase M, Tokuno H, Nambu A et al (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833(2):191–201

    Article  PubMed  Google Scholar 

  • Jackson A, Crossman AR (1981) Subthalamic nucleus efferent projection to the cerebral cortex. Neuroscience 6(11):2367–2377

    Article  PubMed  Google Scholar 

  • Joel D, Weiner I (1997) The connections of the primate subthalamic nucleus: indirect pathways and the open interconnected scheme of basal ganglia thalamocortical circuitry. Brain Res Rev 23(1-2):62–78

    Article  PubMed  Google Scholar 

  • Kantak KM, Yager LM, Brisotti MF (2013) Impact of medial orbital cortex and medial subthalamic nucleus inactivation, individually and together, on the maintenance of cocaine self-administration behavior in rats. Behav Brain Res 238:1–9

    Article  PubMed  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260(3):435–452

    Article  PubMed  Google Scholar 

  • Kita T, Osten P, Kita H (2014) Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 522(18):4043–4056

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214(2):411–415

    Article  PubMed  Google Scholar 

  • Knobel D, Aybek S, Pollo C et al (2008) Rapid resolution of dopamine dysregulation syndrome (DDS) after subthalamic DBS for Parkinson disease (PD): a case report. Cogn Behav Neurol 21:187–189

    Article  PubMed  Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173(1):147–164

    Article  PubMed  Google Scholar 

  • Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33:634–642

    Article  PubMed  Google Scholar 

  • Lardeux S, Pernaud R, Paleressompoulle D, Baunez C (2009) Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. J Neurophysiol 102:2526–2537

    Article  PubMed  Google Scholar 

  • Lardeux S, Paleressompoulle D, Pernaud R et al (2013) Different populations of subthalamic neurons encode cocaine versus sucrose reward and predict future error. J Neurophysiol 110(7):1497–1510

    Article  PubMed  Google Scholar 

  • Lawrence AD, Evans AH, Lees AJ (2003) Compulsive use of dopamine replacement therapy in Parkinson’s disease: reward systems gone awry? Lancet Neurol 2(10):595–604

    Article  PubMed  Google Scholar 

  • Le Jeune F, Drapier D, Bourguignon A et al (2009) Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 73(21):1746–1751

    Article  PubMed  Google Scholar 

  • Levesque J, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20(5):574–584

    Article  PubMed  Google Scholar 

  • Lhommee E, Klinger H, Thobois S et al (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135:1463–1477

    Article  PubMed  Google Scholar 

  • Lim SY, O’Sullivan SS, Kotschet K et al (2009) Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci 16:1148–1152

    Article  PubMed  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffmann D et al (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95

    Article  PubMed  Google Scholar 

  • Macia F, Perlemoine C, Coman I, Guehl D, Burbaud P, Cuny E et al (2004) Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord 19:206–212

    Article  PubMed  Google Scholar 

  • Mallet L, Polosan M, Jaafari N et al (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359:2121–2134

    Article  PubMed  Google Scholar 

  • Martinez-Fernandez R, Pelissier P, Quesada JL et al (2016) Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry 87(3):311–318. doi:10.1136/jnnp-2014-310189

    Article  PubMed  Google Scholar 

  • Matsumura M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67(6):1615–1632

    PubMed  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2-3):69–97

    Article  PubMed  Google Scholar 

  • Monakow KH, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33(3-4):395–403

    Article  PubMed  Google Scholar 

  • Montaurier C, Morio B, Bannier S et al (2007) Mechanisms of body weight gain in patients with Parkinson’s disease after subthalamic stimulation. Brain 130:1808–1818

    Article  PubMed  Google Scholar 

  • Morris LS, Kundu P, Baek K et al (2015) Jumping the gun: mapping neural correlates of waiting impulsivity and relevance across alcohol misuse. Biol Psychiatry 79(6):499–507

    Article  PubMed  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16(8):2671–2683

    PubMed  Google Scholar 

  • Nauta HJ, Cole M (1978) Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comp Neurol 180(1):1–16

    Article  PubMed  Google Scholar 

  • Novakova L, Ruzicka E, Jech R, Serranova T, Dusek P, Urgosik D (2007) Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neuroendocrinol Lett 28:21–25

    PubMed  Google Scholar 

  • Novakova L, Haluzik M, Jech R et al (2011) Hormonal regulators of food intake and weight gain in Parkinson’s disease after subthalamic nucleus stimulation. Neuro Endocrinol Lett 32(4):437–441

    PubMed  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20(1):128–154

    Article  PubMed  Google Scholar 

  • Pelloux Y, Baunez C (2013) Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr Opin Neurobiol 23(4):713–720

    Article  PubMed  Google Scholar 

  • Pelloux Y, Meffre J, Giorla E, Baunez C (2014) The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Front Behav Neurosci 8:414

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelloux Y, Degoulet M, Tiran-Cappello A, Cohen C, Lardeux S, George O, Koob GF, Ahmed SH and Baunez C, Turning off the subthalamic nucleus prevents escalation of cocaine intake and restores controlled use after escalation. In preparation.

    Google Scholar 

  • Pollak P, Benabid AL, Gervason CL et al (1993) Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor. Adv Neurol 60:408–413

    PubMed  Google Scholar 

  • Pratt WE, Choi E, Guy EG (2012) An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat. Behav Brain Res 230(2):365–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricardo JA (1980) Efferent connections of the subthalamic region in the rat in the subthalamic nucleus of Luys. Brain Res 202(2):257–271

    Article  PubMed  Google Scholar 

  • Rieu I, Derost P, Ulla M et al (2011) Body weight gain and deep brain stimulation. J Neurol Sci 310(1-2):267–270

    Article  PubMed  Google Scholar 

  • Rouaud T, Lardeux S, Panayotis N et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci U S A 107:1196–1200

    Article  PubMed  Google Scholar 

  • Růžička F, Jech R, Nováková L et al (2012) Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson’s disease. PLoS One 7(5):e38020

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauleau P, Eusebio A, Vandenberghe W et al (2009) Deep brain stimulation modulates effects of motivation in Parkinson’s disease. Neuroreport 20(6):622–626

    Article  PubMed  Google Scholar 

  • Serranová T, Sieger T, Dušek P et al (2013) Sex, food and threat: startling changes after subthalamic stimulation in Parkinson’s disease. Brain Stimul 6(5):740–745

    Article  PubMed  Google Scholar 

  • Smith Y, Hazrati LN, Parent A (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294(2):306–323

    Article  PubMed  Google Scholar 

  • Strowd RE, Cartwright MS, Passmore LV et al (2010) Weight change following deep brain stimulation for movement disorders. J Neurol 257:1293–1297

    Article  PubMed  Google Scholar 

  • Takada M, Tokuno H, Hamada M et al (2001) Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14(10):1633–1650

    Article  PubMed  Google Scholar 

  • Teagarden MA, Rebec GV (2007) Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task. J Neurophysiol 97(3):2042–2058

    Article  PubMed  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398(6729):704–708

    Article  PubMed  Google Scholar 

  • Trillet M, Vighetto A, Croisile B et al (1995) Hemiballismus with logorrhea and thymo-affective disinhibition caused by hematoma of the left subthalamic nucleus. Rev Neurol (Paris) 151(6-7):416–419

    Google Scholar 

  • Tuite PJ, Maxwell RE, Ikramuddin S et al (2005) Weight and body mass index in Parkinson’s disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord 11:247–252

    Article  PubMed  Google Scholar 

  • Uslaner JM, Yang P, Robinson TE (2005) Subthalamic nucleus lesions enhance the psychomotor-activating, incentive motivational, and neurobiological effects of cocaine. J Neurosci 25(37):8407–8415

    Article  PubMed  Google Scholar 

  • Uslaner JM, Dell Orco JM, Pevzner A, Robinson TE (2008) The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: facilitation of incentive salience attribution? Neuropsychopharmacology 33:2352–2361

    Article  PubMed  Google Scholar 

  • Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139(12):5015–5033

    PubMed  Google Scholar 

  • Van Der Kooy D, Hattori T (1980) Single subthalamic nucleus neurons project to both the globus pallidus and substantia nigra in rat. J Comp Neurol 192(4):751–768

    Article  Google Scholar 

  • Visser-Vandewalle V, Van der Linden C, Temel Y et al (2005) Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. Parkinsonism Relat Disord 11:157–165

    Article  PubMed  Google Scholar 

  • Wade CL, Hernandez DO, Breysse E et al (Submitted) Preclinical evidence for therapeutic efficacy of high-frequency stimulation of the subthalamic nucleus for heroin dependence

    Google Scholar 

  • Winstanley CA, Baunez C, Theobald DE, Robbins TW (2005) Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci 21(11):3107–3116

    Article  PubMed  Google Scholar 

  • Witjas T, Baunez C, Henry JM et al (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20:1052–1055

    Article  PubMed  Google Scholar 

  • Wolf ME (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv 2(3):146–157

    Article  PubMed  Google Scholar 

  • Zenon A, Duclos Y, Carron R et al (2016) The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making. Brain 139(Pt 6):1830–1843

    Google Scholar 

  • Zijlstra F, Veltman DJ, Booij J, van den Brink W, Franken IH (2009) Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend 99(1-3):183–192

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The author’s work reported in this chapter has been supported by grants from the Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, the Agence Nationale pour la Recherche (ANR-09-MNPS-028-01 and ANR 2010-NEUR-005-01 in the framework of the ERA-Net NEURON and projet “investissement d’avenir” A*MIDEX with reference ANR-11-IDEX-0001-02), the IREB (Institut de Recherches Scientifiques sur les Boissons), and Fondation pour le Recherche Médicale (FRM, DPA20140629789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Baunez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baunez, C. (2016). The Subthalamic Nucleus and Reward-Related Processes. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_14

Download citation

Publish with us

Policies and ethics