Skip to main content

Striatal Mechanisms of Associative Learning and Dysfunction in Neurological Disease

  • Chapter
  • First Online:
Book cover The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 1797 Accesses

Abstract

A critical component of adaptive human behavior is the ability to rapidly form and update associations between environmental cues, actions, and outcomes. This form of learning provides an integral evolutionary advantage, allowing agents to reproduce behaviors that lead to rewarding outcomes more frequently while avoiding actions that may result in aversive or potentially deadly conclusions. A broad and diverse range of cognitive functions and brain regions are required to cooperatively function to produce a system that can flexibly and continuously adapt to on-going environmental and cognitive dynamics. The focus of this chapter will be to explore the neural mechanisms that underlie this cognitive process—associative learning—with a specific focus on a cluster of subcortical gray masses collectively known as the basal ganglia. We will review some of the anatomical features of the basal ganglia and recent findings of associative learning from the cellular and molecular perspective as well as findings from in vivo awake-and-behaving neurophysiological experiments in animals and humans. Finally, we will conclude with a section on dysfunctions in associative learning observed in neurological disease, spanning motor, and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington’s Disease Collaborative Research Group (1993). Cell 72(6):971–983

    Google Scholar 

  • Aarsland D, Zaccai J, Brayne C (2005) A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord 20(10):1255–1263

    Article  PubMed  Google Scholar 

  • Adler CM, McDonough-Ryan P, Sax KW et al (2000) fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res 34(4-5):317–324

    Article  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  PubMed  Google Scholar 

  • Alexander GE, DeLong MR (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  Google Scholar 

  • Aouizerate B, Cuny E, Bardinet E et al (2009) Distinct striatal targets in treating obsessive-compulsive disorder and major depression. J Neurosurg 111(4):775–779

    Article  PubMed  Google Scholar 

  • Aylward EH, Li Q, Stine OC et al (1997) Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 48(2):394–399

    Article  PubMed  Google Scholar 

  • Baddeley A, Logie R, Bressi S et al (1986) Dementia and working memory. Q J Exp Psychol Sect A Hum Exp Psychol 38(4):603–618

    Article  Google Scholar 

  • Bamford KA, Caine ED, Kido DK et al (1995) A prospective evaluation of cognitive decline in early Huntington’s disease: functional and radiographic correlates. Neurology 45(10):1867–1873

    Article  PubMed  Google Scholar 

  • Barnes TD, Kubota Y, Hu D et al (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437(7062):1158–1161

    Article  PubMed  Google Scholar 

  • Baxter LR, Phelps ME, Mazziotta JC et al (1987) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44(3):211–218

    Article  PubMed  Google Scholar 

  • Beato R, Levy R, Pillon B et al (2008) Working memory in Parkinson’s disease patients: clinical features and response to levodopa. Arq Neuropsiquiatr 66(2A):147–151

    Article  PubMed  Google Scholar 

  • Beiser DG, Houk JC (1998) Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol 79(6):3168–3188

    PubMed  Google Scholar 

  • Belin D, Jonkman S, Dickinson A et al (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199(1):89–102

    Article  PubMed  Google Scholar 

  • Benkelfat C, Nordahl TE, Sample WE et al (1990) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Patients treated with clomipramine. Arch Gen Psychiatry 47(9):840–848

    Article  PubMed  Google Scholar 

  • Bracht T, Horn H, Strik W et al (2014) White matter pathway organization of the reward system is related to positive and negative symptoms in schizophrenia. Schizophr Res 153(1–3):136–142

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114(Pt 1A):215–231

    PubMed  Google Scholar 

  • Calabresi P, Piccni B, Tozzi A et al (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17(8):1022–1030

    Article  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    Article  PubMed  Google Scholar 

  • Chamberlain SR, Fineberg NA, Blackwell AD et al (2006) Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. Am J Psychiatry 163(7):1282–1284

    Article  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23(25):8771–8780

    PubMed  Google Scholar 

  • Clark VP, Lai S, Deckel AW (2002) Altered functional MRI responses in Huntington’s disease. Neuroreport 13(5):703–706

    Article  PubMed  Google Scholar 

  • Claus JJ, Mohr E (1996) Attentional deficits in Alzheimer’s, Parkinson’s, and Huntington’s diseases. Acta Neurol Scand 93(5):346–351

    Article  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143

    Article  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41(11):1431–1441

    Article  PubMed  Google Scholar 

  • Costa A, Peppe A, Brusa L et al (2008) Dopaminergic modulation of prospective memory in Parkinson’s disease. Behav Neurol 19(1–2):45–48

    Article  PubMed  Google Scholar 

  • Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71

    Article  PubMed  Google Scholar 

  • Cragg SJ (2003) Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J Neurosci 23(10):4378–4385

    PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192(4238):481–483

    Article  PubMed  Google Scholar 

  • Cummings JL (1992) Depression and Parkinson’s disease: a review. Am J Psychiatry 149(4):443–454

    Article  PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148(11):1474–1486

    Article  PubMed  Google Scholar 

  • de la Monte SM, Vonsattel JP, Richardson EP (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 47(5):516–525

    Article  PubMed  Google Scholar 

  • Deckersbach T, Savage CR, Curran T et al (2002) A study of parallel implicit and explicit information processing in patients with obsessive-compulsive disorder. Am J Psychiatry 159(10):1780–1782

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  PubMed  Google Scholar 

  • Descarries L, Watkins KC, Garcia S et al (1996) Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J Comp Neurol 375(2):167–186

    Article  PubMed  Google Scholar 

  • Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7(2):193–224

    Article  PubMed  Google Scholar 

  • Elliott R, Deakin B (2005) Role of the orbitofrontal cortex in reinforcement processing and inhibitory control: evidence from functional magnetic resonance imaging studies in healthy human subjects. Int Rev Neurobiol 65:89–116

    Article  PubMed  Google Scholar 

  • Enzi B, Edel MA, Lissek S et al (2012) Altered ventral striatal activation during reward and punishment processing in premanifest Huntington’s disease: a functional magnetic resonance study. Exp Neurol 235(1):256–264

    Article  PubMed  Google Scholar 

  • Ernst M, Nelson EE, McClure EB et al (2004) Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42(12):1585–1597

    Article  PubMed  Google Scholar 

  • Evans AH, Strafella AP, Weintraub D, Stacy M (2009) Impulsive and compulsive behaviors in Parkinson’s disease. Mov Disord 24(11):1561–1570

    Article  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–1902

    Article  PubMed  Google Scholar 

  • Flowers KA, Robertson C (1985) The effect of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatry 48(6):517–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Foerde K, Shohamy D (2011) The role of the basal ganglia in learning and memory: insight from Parkinson’s disease. Neurobiol Learn Mem 96(4):624–636

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornito A, Harrison BJ, Goodby E et al (2013) Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry 70(11):1143–1151

    Article  PubMed  Google Scholar 

  • Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci 1(2):137–160

    Article  PubMed  Google Scholar 

  • Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306(5703):1940–1943

    Article  PubMed  Google Scholar 

  • Friedlander L, Desrocher M (2006) Neuroimaging studies of obsessive-compulsive disorder in adults and children. Clin Psychol Rev 26(1):32–49

    Article  PubMed  Google Scholar 

  • Gale JT, Lee KH, Amirnovin R et al (2013) Electrical stimulation-evoked dopamine release in the primate striatum. Stereotact Funct Neurosurg 91(6):355–363

    Article  PubMed  Google Scholar 

  • Galvan A, Devergnas A, Wichmann T (2015) Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng DY, Li YX, Zee CS (2006) Magnetic resonance imaging-based volumetric analysis of basal ganglia nuclei and substantia nigra in patients with Parkinson’s disease. Neurosurgery 58(2):256–262

    Article  PubMed  Google Scholar 

  • Gillies A, Arbuthnott G (2000) Computational models of the basal ganglia. Mov Disord 15(5):762–770

    Article  PubMed  Google Scholar 

  • Ginovart N, Lundin A, Farde L et al (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120:503–514

    Article  PubMed  Google Scholar 

  • Gold JM, Waltz JA, Prentice KJ et al (2008) Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull 34(5):835–847

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1986) Levodopa treatment may benefit or impair “frontal” function in Parkinson’s disease. Lancet 2(8513):970–971

    Article  PubMed  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘On’ and ‘Off’ levodopa. Brain 111(2):299–321

    Article  PubMed  Google Scholar 

  • Graef S, Biele G, Krugel LK et al (2010) Differential influence of levodopa on reward-based learning in Parkinson’s disease. Front Hum Neurosci 4:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28(2):343–347

    Article  PubMed  Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265(5180):1826–1831

    Article  PubMed  Google Scholar 

  • Grossman M, Cooke A, DeVita C et al (2003) Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology 60(5):775–781

    Article  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35(1):4–26

    Article  PubMed  Google Scholar 

  • Hacker CD, Perlmutter JS, Criswell SR et al (2012) Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135:3699–3711

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliday GM, McRitchie DA, Macdonald V et al (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154(2):663–672

    Article  PubMed  Google Scholar 

  • Hanna-Pladdy B, Heilman KM (2010) Dopaminergic modulation of the planning phase of skill acquisition in Parkinson’s disease. Neurocase, 16(2):182–190. http://doi.org/10.1080/13554790903379609

    Google Scholar 

  • Harrington DL, Haaland KY, Hermanowitz N (1988) Temporal processing in the basal ganglia. Neuropsychology 12(1):3–12

    Article  Google Scholar 

  • Harris GJ, Pearlson GD, Peyser CE (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31(1):69–75

    Article  PubMed  Google Scholar 

  • Harris GJ, Aylward EH, Peyser CE et al (1996) Single photon emission computed tomographic blood flow and magnetic resonance volume imaging of imaging of basal ganglia in Huntington’s Disease. Arch Neurol 53(4):316–324

    Article  PubMed  Google Scholar 

  • Herrero MT, Barcia C, Navarro J (2002) Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst 18(8):386–404

    Article  PubMed  Google Scholar 

  • Ho AK, Sahakian BJ, Brown RG et al (2003) Profile of cognitive progression in early Huntington’s disease. Neurology 61(12):1702–1706

    Article  PubMed  Google Scholar 

  • Howe MW, Tierney PL, Sandberg SG et al (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500(7464):575–579

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35(3):549–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Hozumi A, Hirata K, Tanaka H, Yamazki K (2002) Perseveration for novel stimuli in Parkinson’s disease: an evaluation based on event-related potentials topography. Mov Disord 15(5):835–842

    Article  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31(1):6–41

    Article  PubMed  Google Scholar 

  • Jahanshahi M, Wilkinson L, Gahir H et al (2010) Medication impairs probabilistic classification learning in Parkinson’s disease. Neuropsychologia 48(4):1096–1103

    Article  PubMed  Google Scholar 

  • Jellinger KA (2010) Neuropathology in Parkinson’s disease with mild cognitive impairment. Acta Neuropathol 120:829–830, author reply 831

    Article  PubMed  Google Scholar 

  • Jernigan TL, Salmon DP, Butters N, Hesselink JR (1991) Cerebral structure on MRI, part II: specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29(1):68–81

    Article  PubMed  Google Scholar 

  • Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15(4–6):535–547

    Article  PubMed  Google Scholar 

  • Joel D, Zohar O, Afek M et al (2005) Impaired procedural learning in obsessive-compulsive disorder and Parkinson’s disease, but not in major depressive disorder. Behav Brain Res 157(2):253–263

    Article  PubMed  Google Scholar 

  • Jones CRG, Malone TJL, Dirnberger G et al (2008) Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn 68(1):30–41

    Article  PubMed  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M et al (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29(2):409–416

    Article  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413

    Article  PubMed  Google Scholar 

  • Kao MH, Doupe AJ, Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433(7026):638–643

    Article  PubMed  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23

    Article  PubMed  Google Scholar 

  • Katnani HA, Patel SR, Kwon C-S et al (2016). Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning. Scientific Reports, 6, 18806. http://doi.org/10.1038/srep18806

  • Kehagia AA, Barker RA, Robbins TW (2013) Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis 11(2):79–92

    Article  PubMed  Google Scholar 

  • Kemali D, Maj M, Galderisi S et al (1987) Conditional associative learning in drug-free schizophrenic patients. Neuropsychobiology 17(1-2):30–34

    Article  PubMed  Google Scholar 

  • Kim JS, Reading SA, Brashers-Krug T et al (2004) Functional MRI study of a serial reaction time task in Huntington’s disease. Psychiatry Res 131(1):23–30

    Article  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880

    Article  PubMed  Google Scholar 

  • Kluver H, Bucy PC (1997) Preliminary analysis of functions of the temporal lobes in monkeys. 1939. J Neuropsychiatry Clin Neurosci 9(4):606–620

    Article  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1983) Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurological patients. J Nerv Ment Dis 171(7):435–443

    Article  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6(9):691–702

    Article  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372

    Article  PubMed  Google Scholar 

  • Kudlicka A, Clare L, Hindle JV (2011) Executive functions in Parkinson’s disease: systematic review and meta-analysis. Mov Disord 26(13):2305–2315

    Article  PubMed  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH et al (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12(5):425–434

    Article  PubMed  Google Scholar 

  • Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2(12):a009621

    Article  PubMed  PubMed Central  Google Scholar 

  • Laplane D, Levasseur M, Pillon B et al (1989) Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112(Pt 3):699–725

    Article  PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ, Hodges JR et al (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119(Pt 5):1633–1645

    Article  PubMed  Google Scholar 

  • Lewis SJG, Dove A, Robbins TW et al (2003) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23(15):6351–6356

    PubMed  Google Scholar 

  • Li L, Fan M, Icton CD et al (2003) Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging 24(8):1113–1121

    Article  PubMed  Google Scholar 

  • Lisanby SH, McDonald WM, Massey EW (1993) Diminished subcortical nuclei volumes in Parkinson’s disease by MR imaging. J Neural Transm Suppl 40:13–21

    PubMed  Google Scholar 

  • Litvak V, Jha A, Eusebio A et al (2011) Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134(Pt 2):359–374

    Article  PubMed  Google Scholar 

  • Macdonald PA, Monchi O (2011) Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinsons Dis 2011:572743

    PubMed  PubMed Central  Google Scholar 

  • Marsh R, Alexander GM, Packard MG et al (2004) Habit learning in Tourette syndrome: a translational neuroscience approach to a developmental psychopathology. Arch Gen Psychiatry 61(12):1259–1268

    Article  PubMed  Google Scholar 

  • Martins Serra A, Jones SH, Toone B, Gray JA (2001) Impaired associative learning in chronic schizophrenics and their first-degree relatives: a study of latent inhibition and the Kamin blocking effect. Schizophr Res 48(2–3):273–289

    Article  PubMed  Google Scholar 

  • Matthews SC, Simmons AN, Lane SD, Paulus MP (2004) Selective activation of the nucleus accumbens during risk-taking decision making. Neuroreport 15(13):2123–2127

    Article  PubMed  Google Scholar 

  • Menzies L, Chamberlain SR, Laird AR et al (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32(3):525–549

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31(2-3):236–250

    Article  PubMed  Google Scholar 

  • Milad MR, Rauch SL (2007) The role of the orbitofrontal cortex in anxiety disorders. Ann N Y Acad Sci 1121(1):546–561

    Article  PubMed  Google Scholar 

  • Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16(1):43–51

    Article  PubMed  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2–3):69–97

    Article  PubMed  Google Scholar 

  • Mollion H, Ventre-Dominey J, Dominey PF, Broussolle E (2003) Dissociable effects of dopaminergic therapy on spatial versus non-spatial working memory in Parkinson’s disease. Neuropsychologia 41(11):1442–1451

    Article  PubMed  Google Scholar 

  • Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31(1):21–29

    PubMed  PubMed Central  Google Scholar 

  • Morris R, Griffiths O, Le Pelley ME, Weickert TW (2013) Attention to irrelevant cues is related to positive symptoms in schizophrenia. Schizophr Bull 39(3):575–582

    Article  PubMed  Google Scholar 

  • Nakamura K, Hikosaka O (2006) Facilitation of saccadic eye movements by postsaccadic electrical stimulation in the primate caudate. J Neurosci 26(50):12885–12895

    Article  PubMed  Google Scholar 

  • Nordahl TE, Benkelfat C, Semple WE et al (1989) Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology 2(1):23–28

    Article  PubMed  Google Scholar 

  • O’Boyle DJ, Freeman JS, Cody FW (1996) The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain 119:51–70

    Article  PubMed  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427

    Article  PubMed  Google Scholar 

  • Olveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3(5):e153

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantelis C, Barnes TR, Nelson HE et al (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843

    Article  PubMed  Google Scholar 

  • Parkinson JA, Dalley JW, Cardinal RN et al (2002) Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 137(1-2):149–163

    Article  PubMed  Google Scholar 

  • Parkkinen L, Kauppinen T, Pirttilä T et al (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57(1):82–91

    Article  PubMed  Google Scholar 

  • Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433(7028): 873–876. http://doi.org/10.1038/nature03287

    Google Scholar 

  • Patel SR, Sheth SA, Mian MK et al (2012) Single-neuron responses in the human nucleus accumbens during a financial decision-making task. J Neurosci 32(21):7311–7315

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel SR, Sheth SA, Martinez Rubio C et al (2013) Studying task-related activity of individual neurons in the human brain. Nat Protoc 8(5):949–957

    Article  PubMed  Google Scholar 

  • Pavese N, Andrews TC, Brooks DJ et al (2003) Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 126(Pt 5):1127–1135

    Article  PubMed  Google Scholar 

  • Penadés R, Catalán R, Rubia K et al (2007) Impaired response inhibition in obsessive compulsive disorder. Eur Psychiatry 22(6):404–410

    Article  PubMed  Google Scholar 

  • Pine A, Shiner T, Seymour B, Dolan RJ (2010) Dopamine, time, and impulsivity in humans. J Neurosci 30(26):8888–8896

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Evins AE, Schetter EC et al (2008) Single dose of a dopamine agonist impairs reinforcement learning in humans: behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology 196(2):221–232

    Article  PubMed  Google Scholar 

  • Poudel GR, Stout JC, Domínguez DJF et al (2014) White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiol Dis 65:180–187

    Article  PubMed  Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286(5768):74–76

    Article  PubMed  Google Scholar 

  • Quidé Y, Morris RW, Shepherd AM et al (2013) Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophr Res 150(2-3):468–475

    Article  PubMed  Google Scholar 

  • Raij TT, Mäntylä T, Kieseppä T, Suvisaari J (2015) Aberrant functioning of the putamen links delusions, antipsychotic drug dose, and compromised connectivity in first episode psychosis-preliminary fMRI findings. Psychiatry Res 233(2):201–211

    Article  PubMed  Google Scholar 

  • Rauch SL, Wedig MM, Wright CI et al (2007) Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biol Psychiatry 61(3):330–336

    Article  PubMed  Google Scholar 

  • Reiss JP, Campbell DW, Leslie WD et al (2005) The role of the striatum in implicit learning: a functional magnetic resonance imaging study. Neuroreport 16(12):1291–1295

    Article  PubMed  Google Scholar 

  • Rolland B, Amad A, Poulet E (2015) Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull 41(1):291–299

    Article  PubMed  Google Scholar 

  • Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60(10):1615–1620

    Article  PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98

    Article  PubMed  Google Scholar 

  • Sachdev PS, Malhi GS (2005) Obsessive-compulsive behaviour: a disorder of decision-making. Aust N Z J Psychiatry 39(9):757–763

    PubMed  Google Scholar 

  • Sánchez-Pernaute R, García-Segura JM, del Barrio AA et al (1999) Clinical correlation of striatal 1H MRS changes in Huntington’s disease. Neurology 53(4):806–812

    Article  PubMed  Google Scholar 

  • Sarpal DK, Robinson DG, Lencz T et al (2015) Antipsychotic treatment and functional connectivity of the striatum in first-episode schizophrenia. JAMA Psychiatry 72(1):5–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlaepfer TE, Cohen MX, Frick C et al (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33(2):368–377

    Article  PubMed  Google Scholar 

  • Schlagenhauf F, Sterzer P, Schmack K et al (2009) Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biol Psychiatry 65(12):1032–1039

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(3):630–653

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13(6):885–890

    Article  PubMed  Google Scholar 

  • Schröder KF, Hopf A, Lange H et al (1975) Morphometrical-statistical structure analysis of human striatum, pallidum and subthalamic nucleus. J Hirnforsch 16(4):333–350

    PubMed  Google Scholar 

  • Schultz W, Dayan P, Motangue PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599

    Article  PubMed  Google Scholar 

  • Schwartz JM, Stoessel PW, Baxter LR (1996) Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Arch Gen Psychiatry 53(2):109–113

    Article  PubMed  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188(4194):1217–1219

    Article  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794

    PubMed  Google Scholar 

  • Shohamy D, Myers CE, Kalanithi J, Gluck MA (2008) Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci Biobehav Rev 32(2):219–236

    Article  PubMed  Google Scholar 

  • Shook SK, Franz EA, Higginson CI, Wheelock VL, Sigvardt KA (2005) Dopamine dependency of cognitive switching and response repetition effects in Parkinson’s patients. Neuropsychologia 43(14):1990–1999

    Article  PubMed  Google Scholar 

  • Simpson EH, Kellendonk C, Kandel E (2010) A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65(5):585–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Smoski MJ, Felder J, Bizzell J et al (2009) fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord 118(1–3):69–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Snowden JS, Craufurd D, Thompson J, Neary D (2002) Psychomotor, executive, and memory function in preclinical Huntington’s disease. J Clin Exp Neurpsychol 24(2):133–145

    Article  Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133(2):197–202

    Article  PubMed  Google Scholar 

  • Sorg C, Manoliu A, Neufang S et al (2013) Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 39(2):387–395

    Article  PubMed  Google Scholar 

  • Sprengelmeyer R, Young AW, Calder AJ (1996) Loss of disgust. Perception of faces and emotions in Huntington’s disease. Brain 119(Pt 5):1647–1665

    Article  PubMed  Google Scholar 

  • Stephenson-Jones M, Kardamakis AA, Robertson B, Grillner S (2013) Independent circuits in the basal ganglia for the evaluation and selection of actions. Proc Natl Acad Sci U S A 110(38):E3670–E3679

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauss GP, Waltz JA, Gold JM (2014) A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull 40(Suppl 2):S107–S116

    Article  PubMed  Google Scholar 

  • Subramaniam S, Sixt KM, Barrow R, Snyder SH (2009) Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324(5932):1327–1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Swainson R, Rogers RD, Sahakian BJ et al (2000) Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 38(5):596–612

    Article  PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G et al (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7(8):887–893

    Article  PubMed  Google Scholar 

  • Thompson JC, Harris J, Sollom AC et al (2012) Longitudinal evaluation of neuropsychiatric symptoms in Huntington’s disease. J Neuropsychiatry Clin Neurosci 24(1):53–60

    Article  PubMed  Google Scholar 

  • Tremblay PL, Bedard MA, Langlois D et al (2010) Movement chunking during sequence learning is a dopamine-dependant process: a study conducted in Parkinson’s disease. Exp Brain Res 205(3):375–385

    Article  PubMed  Google Scholar 

  • Tu PC, Hsieh JC, Li CT et al (2012) Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study. Neuroimage 59(1):238–247

    Article  PubMed  Google Scholar 

  • Unschuld PG, Joel SE, Liu X et al (2012) Impaired cortico-striatal functional connectivity in prodromal Huntington’s Disease. Neurosci Lett 514(2):204–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaillancourt DE, Schonfeld D, Kwak Y et al (2013) Dopamine overdose hypothesis: evidence and clinical implications. Mov Disord 28(14):1920–1929

    Article  PubMed  Google Scholar 

  • van den Heuvel OA, Veltman DJ, Groenewegen HJ et al (2005) Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 62(3):301–309

    Article  PubMed  Google Scholar 

  • Voermans NC, Petersson KM, Daudey L et al (2004) Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron 43(3):427–435

    Article  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577

    Article  PubMed  Google Scholar 

  • Voon V, Sohr M, Lang AE et al (2011) Impulse control disorders in Parkinson disease: a multicenter case–control study. Ann Neurol 69(6):986–996

    Article  PubMed  Google Scholar 

  • Voulalas PJ, Holtzclaw L, Wolstenholme J et al (2005) Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons. J Neurosci 25(15):3763–3773

    Article  PubMed  Google Scholar 

  • Vriezen ER, Moscovitch M (1990) Memory for temporal order and conditional associative-learning in patients with Parkinson’s disease. Neuropsychologia 28(12):1283–1293

    Article  PubMed  Google Scholar 

  • Wadehra S, Pruitt P, Murphy ER, Diwadkar VA (2013) Network dysfunction during associative learning in schizophrenia: increased activation, but decreased connectivity: an fMRI study. Schizophr Res 148(1–3):38–49

    Article  PubMed  Google Scholar 

  • Weintraub D, Koester J, Potenza MN et al (2010) Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 67(5):589–595

    Article  PubMed  Google Scholar 

  • Weisman D, Cho M, Taylor C et al (2007) In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution. Neurology 69(4):356–359

    Article  PubMed  Google Scholar 

  • Wickens JR, Budd CS, Hyland BI, Arbuthnott GW (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann N Y Acad Sci 1104(1):192–212

    Article  PubMed  Google Scholar 

  • Williams ZM, Eskander EN (2006) Selective enhancement of associative learning by microstimulation of the anterior caudate. Nat Neurosci 9(4):562–568

    Article  PubMed  Google Scholar 

  • Williams D, Tijssen M, Van Bruggen G et al (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125(Pt 7):1558–1569

    Article  PubMed  Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201(4352):262–264

    Article  PubMed  Google Scholar 

  • Yager LM, Garcia AF, Wunsch AM, Ferguson SM (2015) The ins and outs of the striatum: role in drug addiction. Neuroscience 301:529–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaghloul KA, Blanco JA, Weidemann CT et al (2009) Human substantia nigra neurons encode unexpected financial rewards. Science 323(5920):1496–1499

    Article  PubMed  PubMed Central  Google Scholar 

  • Zgaljardic DJ, Borod JC, Foldi NS, Mattis P (2003) A review of the cognitive and behavioral sequelae of Parkinson’s disease: relationship to frontostriatal circuitry. Cogn Behav Neurol 16(4):193–210

    Article  PubMed  Google Scholar 

  • Zgaljardic DJ, Borod JC, Foldi NS et al (2006) An examination of executive dysfunction associated with frontostriatal circuitry in Parkinson’s disease. J Clin Exp Neuropsychol 28(7):1127–1144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhang L, Liang Y et al (2009) Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J Neurosci 29(13):4035–4043

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498

    Article  PubMed  Google Scholar 

  • Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun R. Patel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, S.R., Cheng, J.J., Khanna, A.R., Desai, R., Eskandar, E.N. (2016). Striatal Mechanisms of Associative Learning and Dysfunction in Neurological Disease. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_12

Download citation

Publish with us

Policies and ethics