Skip to main content

The Basal Ganglia Contribution to Controlled and Automatic Processing

  • Chapter
  • First Online:
Book cover The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

The basal ganglia are traditionally associated with motor activity. However, recent studies indicate that this structure plays a key role in cognitive processes. In this chapter, we analyze the involvement of the dorsal striatum in controlled and automatic processes. These two concepts are major research topics in psychology and neuroscience, since they have a relevance to different fields such as attention, learning, and memory. The dorsal striatum is a structure anatomically divided into different main functional domains that are essential for the acquisition and expression of habits and goal-directed behaviors. From these recent ideas of basal ganglia function, this chapter includes an integrative view of normal and pathological processes observed in some mental and degenerative illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. TINS 12:366–375

    PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits-neural substrates of parallel processing. TINS 13:266–271

    PubMed  Google Scholar 

  • Alexander GE, Delong M, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  • Atallah HE, Lopez-Paniagua D, Rudy JW et al (2007) Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci 10:126–131

    Article  PubMed  Google Scholar 

  • Balleine BW (2001) Incentive processes in instrumental conditioning. In: Mowrer R, Klein S (eds) Handbook of contemporary learning theories. LEA, Hillsdale, pp 307–366

    Google Scholar 

  • Balleine BW (2005) Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol Behav 86:717–730

    Article  PubMed  Google Scholar 

  • Balleine BN, Dickinson A (1998a) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998b) The role of incentive learning in instrumental outcome revaluation by specific satiety. Anim Learn Behav 26:46–59

    Article  Google Scholar 

  • Balleine BW, Ostlund SB (2007) Still at the choicepoint: action selection and initiation in instrumental conditioning. Ann N Y Acad Sci 1104:147–171

    Article  PubMed  Google Scholar 

  • Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199:43–52

    Article  PubMed  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  PubMed  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine and the molecular mechanisms of memory. Neuron 25:515–532

    Article  PubMed  Google Scholar 

  • Bouton ME (1993) Context, time, and memory retrieval in the interferente paradigms of Pavlovian learning. Psychol Bull 114:80–99

    Article  PubMed  Google Scholar 

  • Brodgen WS (1939) Sensory preconditioning. J Exp Psychol 25:323–332

    Article  Google Scholar 

  • Charara A, Grace AA (2003) Dopamine receptor subtypes selectively modulate excitatory afferents from the hippocampus and amygdala to rat nucleus accumbens neurons. Neuropsychopharmacology 28:1412–1421

    Article  PubMed  Google Scholar 

  • Crossman AR (1987) Primate models of dyskinesia: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21:1–40

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. TINS 13:281–285

    PubMed  Google Scholar 

  • Díaz E, Vargas JP, Quintero E, de la Casa G et al (2014) Differential implication of dorsolateral and dorsomedial striatum in encoding and recovery processes of latent inhibition. Neurobiol Learn Mem 111:19–25

    Article  PubMed  Google Scholar 

  • Díaz E, Medellín J, Sánchez N et al (2015) Involvement of D1 and D2 dopamine receptor in the recovery processes of stimuli in latent inhibition. Psychopharmacology 232:4337–4346

    Article  PubMed  Google Scholar 

  • Dickinson A (1980) Contemporary animal learning theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Dickinson A (1989) Expectancy theory in animal conditioning. In: Klein SB, Mowrer RR (eds) Contemporary learning theories: Pavlovian conditioning and the status of traditional learning theories. Lawrence Erlbaum Associates, Hillsdale, pp 279–308

    Google Scholar 

  • Dickinson A, Balleine B (1993) Actions and responses: the dual psychology of behaviour. In: Eilan N, McCarthy RA, Brewer B (eds) Spatial representation: problems in philosophy and psychology. Blackwell Publishers Inc, Malden, pp 277–293

    Google Scholar 

  • Dickinson A, Balleine BW (1994) Motivational control of goal-directed action. Anim Learn Behav 22:1–18

    Article  Google Scholar 

  • Dickinson A, Balleine BW (2002) The role of learning in motivation. In: Gallistel CR (ed) Learning, motivation & emotion, vol 3, 3rd edn, Steven’s handbook of experimental psychology. Wiley, New York, pp 497–533

    Google Scholar 

  • Dickinson A, Balleine B, Watt A et al (1995) Motivational control after extended instrumental training. Anim Learn Behav 23:197–206

    Article  Google Scholar 

  • Ellenbroek BA, Knobbout DA, Cools AR (1997) The role of mesolimbic and nigrostriatal dopamine in latent inhibition as measured with the conditioned taste aversion paradigm. Psychopharmacology 129:112–120

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behavior. Brain Res Rev 36:129–138

    Article  PubMed  Google Scholar 

  • Floresco S, Blaha CD, Yang CR et al (2001a) Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 21:2851–2860

    PubMed  Google Scholar 

  • Floresco S, Blaha CD, Yang CR et al (2001b) Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 21:6370–6376

    PubMed  Google Scholar 

  • Floresco S, Todd CL, Grace AA (2001c) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    PubMed  Google Scholar 

  • George DN, Duffaud AM, Pothuizen HH et al (2010) Lesions to the ventral, but not the dorsal, medial prefrontal cortex enhance latent inhibition. Eur J Neurosci 31:1474–1482

    Article  PubMed  Google Scholar 

  • Goto Y, Grace AA (2008) Limbic and cortical information processing in the nucleus accumbens. TINS 31:552–558

    PubMed  PubMed Central  Google Scholar 

  • Grace AA, Sesack S (2010) The cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:4–26

    Article  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV et al (1999a) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Mulder AB, Beijer AV et al (1999b) Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology 27:149–164

    Google Scholar 

  • Gruber AJ, Hussain RJ, O’Donnell P (2009) The nucleus accumbens: a switchboard for goal-directed behaviors. PLoS One 4(4):1–10

    Article  Google Scholar 

  • Guthrie ER (1935) The psychology of learning. Harper & Row, New York

    Google Scholar 

  • Haber SN, Fudge JL, Mcfarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  Google Scholar 

  • Holland P (1981) Acquisition of representation mediated conditioned food aversions. Learn Motiv 12:1–18

    Article  Google Scholar 

  • Holland P (1998) Amount of training affects associatively-activated event representation. Neuropharmacology 37:461–469

    Article  PubMed  Google Scholar 

  • Holland P (2005) Amount of training effects in representation-mediated food aversion learning: no evidence for a role for associability changes. Learn Behav 33:464–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Homayoun H, Moghaddam B (2009) Differential representation of Pavlovian-instrumental transfer by prefrontal cortex and striatum subregions. Eur J Neurosci 29:1461–1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvitz JC (2009) Stimulus-response and response-outcome learning-mechanisms in the striatum. Behav Brain Res 199:129–140

    Article  PubMed  Google Scholar 

  • Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110

    Article  PubMed  Google Scholar 

  • Hull CL (1943) Principles of behavior. Appleton-Century Crofts, New York

    Google Scholar 

  • Ito R, Hayen A (2011) Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. J Neurosci 31(16):6001–6007

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeanblanc J, Hoeltzel A, Louilot A (2003) Differential Involvement of dopamine in the anterior and posterior parts of the dorsal striatum in latent inhibition. Neuroscience 118:233–241

    Article  PubMed  Google Scholar 

  • Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal striatal versus sensorimotor input. J Comp Neurol 350:337–356

    Article  PubMed  Google Scholar 

  • LaBerge D (1975) Acquisition of automatic processing of perceptual and associative learning. In: Rabbitt PMA, Dornic S (eds) Attention and performance V. Academic, New York, pp 50–64

    Google Scholar 

  • Lehericy M, Van de Moortele PF, Francois C et al (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    Article  PubMed  Google Scholar 

  • Lewis B, O’Donnell P (2000) Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential “up” states in pyramidal neurons via D1 dopamine receptors. Cereb Cortex 10:1168–1175

    Article  PubMed  Google Scholar 

  • Mackintosh NJ (1975) A theory of attention: variations in the reinforcement with associability of stimuli. Psychol Rev 82:276–298

    Article  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  Google Scholar 

  • Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16:43–51

    Article  PubMed  Google Scholar 

  • Miller EK, Buschman TJ (2007) Bootstrapping your brain: how interactions between the frontal cortex and basal ganglia may produce organized actions and lofty thoughts. In: Kesner RP, Martinez JL (eds) Neurobiology of learning and memory. Academic, Burlington, pp 339–354

    Chapter  Google Scholar 

  • Miller RR, Schachtman TR (1985) Conditioning context as an associative baseline: implications for response generation and the nature of conditioned inhibition. In: Miller RR, Spear NE (eds) Information processing in animals: conditioned inhibition. Erlbaum, Hillsdale, pp 51–88

    Google Scholar 

  • Miyachi S, Hikosaka O, Miyashita K (1997) Differential roles of monkey striatum in learning of sequential hand movement. Exp Brain Res 115:1–5

    Article  PubMed  Google Scholar 

  • Miyachi S, Hikosaka O, Lu X (2002) Differential activation of striatal neurons monkey in the early and late stages of procedural learning. Exp Brain Res 146:122–126

    Article  PubMed  Google Scholar 

  • Nakano K, Kayahara T, Tsutsumi T (2000) Neural circuits and functional organization of you striatum. J Neurol 247:1–15

    Article  Google Scholar 

  • Nambu A (2008) Seven problems on the basal ganglia. Curr Opin Neurobiol 18:595–604

    Article  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    PubMed  Google Scholar 

  • O’Donnell P, Lavin A, Enquist LW (1997) Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transport of pseudorabies virus transynaptic. J Neurosci 17:2143–2167

    PubMed  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. TINS 13:254–258

    PubMed  Google Scholar 

  • Parent A, Hazrati L (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  PubMed  Google Scholar 

  • Pasupathy A, Miller EK (2005) Different time courses of learning related activity in the prefrontal cortex and striatum. Nature 433:873–876

    Article  PubMed  Google Scholar 

  • Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    Article  PubMed  Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from the animal and human brain studies. Neuropsychologia 41:245–251

    Article  PubMed  Google Scholar 

  • Quintero E, Díaz E, Vargas JP (2011a) Ventral subiculum involvement in latent inhibition context specificity. Physiol Behav 102:414–420

    Google Scholar 

  • Quintero E, Diaz E, Vargas JP (2011b) Effects of context novelty vs. familiarity on latent inhibition conditioned taste aversion with a procedure. Behav Process 86:242–249

    Article  Google Scholar 

  • Ragozzino ME (2007) Role of the striatum in learning and memory. In: Kesner RP, Martinez JL (eds) Neurobiology of learning and memory. Academic, Burlington, pp 355–379

    Chapter  Google Scholar 

  • Redish AD (2004) Addiction as a computational process gone awry. Science 306:1944–1947

    Article  PubMed  Google Scholar 

  • Rescorla RA (1973) Effect of US habituation following conditioning. J Comp Physiol Psychol 82:137–143

    Article  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    Article  PubMed  Google Scholar 

  • Rosencrantz JA, Grace AA (2001) Dopamine attenuates prefrontal cortical supression of sensory inputs to the basolateral amygdala of rats. J Neurosci 21:4090–4103

    Google Scholar 

  • Schmajuk NA, Moore JW (1988) The hippocampus and the nictitating membrane response classically conditioned: a real-time attentional-associative model. Psychobiology 46:20–35

    Google Scholar 

  • Schneider W, Shiffrin RM (1977) Controlled and automatic human information processing: detection, search and attention. Psychol Rev 84:1–66

    Article  Google Scholar 

  • Shiffrin RM, Schneider W (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending and general theory. Psychol Rev 84:127–190

    Article  Google Scholar 

  • Simpson EH, Kellendonk C, Kandel E (2010) A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65:585–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolman EC (1932) Purposive behavior in animals and men. Appleton Century, New York

    Google Scholar 

  • Tolman EC, Honzik CH (1939) Introduction and removal of reward and maze performance in rats. Univ Calif Publ Psychol 4:257–275

    Google Scholar 

  • Traverso LM, Quintero E, Vargas JP (2010) Taste trace memory disruption by AP5 administration in basolateral amygdala. NeuroReport 21:99–103

    Article  PubMed  Google Scholar 

  • Utter AA, Basso MA (2008) The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev 32:333–342

    Article  PubMed  Google Scholar 

  • Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670

    Article  PubMed  Google Scholar 

  • Vargas JP, Díaz E, Portavella M et al (2016) Animal models of maladaptive traits: disorders in sensorimotor gating and attentional quantifiable responses as possible endophenotypes. Front Psychol 7:1–9

    Article  Google Scholar 

  • Volkow ND, Wang GJ, Telang F et al (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    Article  PubMed  Google Scholar 

  • Wagner AR (1979) Habituation and memory. In: Dickinson A, Boakcs RA (eds) Mechanisms of learning and motivation. Erlbaum, Hillsdale, pp 53–82

    Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297

    Article  PubMed  Google Scholar 

  • Wise RA (2009) Roles -not just for nigrostriatal dopamine mesocorticolimbic- in reward and addiction. TINS 32:517–524

    PubMed  PubMed Central  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2005a) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur J Neurosci 22:505–512

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ et al (2005b) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:513–523

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

His research was supported by PSI2012-32445 and PSI 2015-65500P grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estrella Díaz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz, E., Vargas, JP., López, JC. (2016). The Basal Ganglia Contribution to Controlled and Automatic Processing. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_11

Download citation

Publish with us

Policies and ethics