Adult and Cancer Stem Cells: Perspectives on Autophagic Fate Determinations and Molecular Intervention

Part of the Current Cancer Research book series (CUCR)


Autophagy is a highly conserved mechanism for the maintenance of cellular homeostasis and functionality in pluripotent stem cells, adult stem cells, and normal somatic cells. Cytoprotective roles of autophagy are essential for eliminating damaged subcellular organelles like mitochondria and protein aggregates, thereby reducing reactive oxygen species (ROS) levels and promoting normal or cancer cell survival. We clarify multiple autophagic inducers, default pathway sensors, and regulators in various stages of stem cells. Of note, with autophagy deficiency, there are two major autophagy-associated outcomes, including pro-autophagic cell survival and death. Clearly, the fates of autophagic determination are tightly regulated by their microenvironments, cell types, and the interplay among multiple cell death machineries related to autophagy, apoptosis, and necrosis. Based on the above fundamental autophagic differences among various cell types, we propose a new concept, balanced autophagy, which sheds light on an equilibrium state between pro-autophagic cell survival and death. We further suggest new strategies targeting therapeutic-resistant cancer stem cells that emphasize the modulatory effects of pro-autophagic cell death in intractable cancer cells.


Autophagy Mitophagy Adult stem cells Cancer stem cells Mitochondria 



We would like to thank our colleague Professor R. Padmanabhan for discussion and Ms. Verma Walker, NIH Library Editing Service, for reviewing the manuscript.


  1. Alers, S., Loffler, A. S., & Wesselborg, S. (2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology, 32(1), 2–11.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bianco, P., & Robey, P. G. (2015). Skeletal stem cells. Development, 142(6), 1023–1027.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Buchser, W. J., Laskow, T. C., Pavlik, P. J., et al. (2012). Cell-mediated autophagy promotes cancer cell survival. Cancer Research, 72(12), 2970–2979.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Canto, C., Jiang, L. Q., Deshmukh, A. S., et al. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metabolism, 11(3), 213–219.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chaachouay, H., Fehrenbacher, B., Toulany, M., et al. (2015). AMPK-independent autophagy promotes radioresistance of human tumor cells under clinical relevant hypoxia in vitro. Radiotherapy and Oncology, 116(3), 409–416.PubMedCrossRefGoogle Scholar
  6. Chen, H., & Chan, D. C. (2009). Mitochondrial dynamics─Fusion, fission, movement, and mitophagy─In neurodegenerative diseases. Human Molecular Genetics, 18(R2), R169–R176.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen, K. G., Leapman, R. D., Zhang, G., et al. (2009). Influence of melanosome dynamics on melanoma drug sensitivity. Journal of the National Cancer Institute, 101(18), 1259–1271.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen, K. G., Mallon, B. S., Johnson, K. R., et al. (2014a). Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation. Stem Cell Research, 12(3), 610–621.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen, K. G., Mallon, B. S., McKay, R. D., et al. (2014b). Human pluripotent stem cell culture: Considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 14(1), 13–26.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen, K. G., & Sikic, B. I. (2012). Molecular pathways: Regulation and therapeutic implications of multidrug resistance. Clinical Cancer Research, 18(7), 1863–1869.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cheng, Y., Ren, X., Hait, W. N., et al. (2013). Therapeutic targeting of autophagy in disease: Biology and pharmacology. Pharmacological Reviews, 65(4), 1162–1197.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cheng, Y., Wang, B., Zhou, H., et al. (2015). Autophagy is required for the maintenance of liver progenitor cell functionality. Cellular Physiology and Biochemistry, 36(3), 1163–1174.PubMedCrossRefGoogle Scholar
  13. Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells—Perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.PubMedCrossRefGoogle Scholar
  14. Colman, R. J., Anderson, R. M., Johnson, S. C., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325(5937), 201–204.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Crighton, D., Wilkinson, S., O’Prey, J., et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1), 121–134.PubMedCrossRefGoogle Scholar
  16. Ding, W. X., & Yin, X. M. (2012). Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biological Chemistry, 393(7), 547–564.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ebato, C., Uchida, T., Arakawa, M., et al. (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metabolism, 8(4), 325–332.PubMedCrossRefGoogle Scholar
  18. Egan, D. F., Shackelford, D. B., Mihaylova, M. M., et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331(6016), 456–461.PubMedCrossRefGoogle Scholar
  19. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.PubMedCrossRefGoogle Scholar
  20. Feng, Z., Hu, W., de Stanchina, E., et al. (2007). The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Research, 67(7), 3043–3053.PubMedCrossRefGoogle Scholar
  21. Feng, Z., Zhang, H., Levine, A. J., et al. (2005). The coordinate regulation of the p53 and mTOR pathways in cells. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8204–8209.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fleming, A., Noda, T., Yoshimori, T., et al. (2011). Chemical modulators of autophagy as biological probes and potential therapeutics. Nature Chemical Biology, 7(1), 9–17.PubMedCrossRefGoogle Scholar
  23. Gautier, C. A., Kitada, T., & Shen, J. (2008). Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11364–11369.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Glinsky, G. V., & Glinsky, V. V. (1996). Apoptosis and metastasis: A superior resistance of metastatic cancer cells to programmed cell death. Cancer Letters, 101(1), 43–51.PubMedCrossRefGoogle Scholar
  25. Gong, C., Bauvy, C., Tonelli, G., et al. (2013). Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene, 32(18), 2261–2272, 2272e 2261-2211.Google Scholar
  26. Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2(1), 48–58.PubMedCrossRefGoogle Scholar
  27. Gottlieb, E., & Vousden, K. H. (2010). p53 regulation of metabolic pathways. Cold Spring Harbor Perspectives in Biology, 2(4), a001040.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gurumurthy, S., Xie, S. Z., Alagesan, B., et al. (2010). The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 468(7324), 659–663.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hamalainen, R. H., Manninen, T., Koivumaki, H., et al. (2013). Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proceedings of the National Academy of Sciences of the United States of America, 110(38), E3622–E3630.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Han, J., Hou, W., Goldstein, L. A., et al. (2008). Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. Journal of Biological Chemistry, 283(28), 19665–19677.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hansen, M., Chandra, A., Mitic, L. L., et al. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genetics, 4(2), e24.PubMedPubMedCentralCrossRefGoogle Scholar
  32. He, W., Wang, Q., Xu, J., et al. (2012). Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy, 8(12), 1811–1821.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hubbard, V. M., Valdor, R., Patel, B., et al. (2010). Macroautophagy regulates energy metabolism during effector T cell activation. Journal of Immunology, 185(12), 7349–7357.CrossRefGoogle Scholar
  34. Ito, K., & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular Cell Biology, 15(4), 243–256.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jiang, M., Liu, K., Luo, J., et al. (2010). Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. American Journal of Pathology, 176(3), 1181–1192.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jiang, P., & Mizushima, N. (2014). Autophagy and human diseases. Cell Research, 24(1), 69–79.PubMedCrossRefGoogle Scholar
  37. Jung, H. S., Chung, K. W., Won Kim, J., et al. (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metabolism, 8(4), 318–324.PubMedCrossRefGoogle Scholar
  38. Karsli-Uzunbas, G., Guo, J. Y., Price, S., et al. (2014). Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discovery, 4(8), 914–927.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504–512.PubMedCrossRefGoogle Scholar
  40. Komatsu, M., Kurokawa, H., Waguri, S., et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology, 12(3), 213–223.PubMedGoogle Scholar
  41. Komatsu, M., Waguri, S., Chiba, T., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884.PubMedCrossRefGoogle Scholar
  42. Komatsu, M., Waguri, S., Koike, M., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6), 1149–1163.PubMedCrossRefGoogle Scholar
  43. Kovacs, J. R., Li, C., Yang, Q., et al. (2012). Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death and Differentiation, 19(1), 144–152.PubMedCrossRefGoogle Scholar
  44. Kroemer, G., Marino, G., & Levine, B. (2010). Autophagy and the integrated stress response. Molecular Cell, 40(2), 280–293.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kubli, D. A., & Gustafsson, A. B. (2012). Mitochondria and mitophagy: The yin and yang of cell death control. Circulation Research, 111(9), 1208–1221.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Li, L., Chen, Y., & Gibson, S. B. (2013). Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cellular Signalling, 25(1), 50–65.PubMedCrossRefGoogle Scholar
  47. Li, J., Hou, N., Faried, A., et al. (2010). Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. European Journal of Cancer, 46(10), 1900–1909.PubMedCrossRefGoogle Scholar
  48. Liu, D., Yang, Y., Liu, Q., et al. (2011). Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Medical Oncology, 28(1), 105–111.PubMedCrossRefGoogle Scholar
  49. Lomonaco, S. L., Finniss, S., Xiang, C., et al. (2009). The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. International Journal of Cancer, 125(3), 717–722.PubMedCrossRefGoogle Scholar
  50. Luciani, F., Spada, M., De Milito, A., et al. (2004). Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. Journal of the National Cancer Institute, 96(22), 1702–1713.PubMedCrossRefGoogle Scholar
  51. Lum, J. J., Bauer, D. E., Kong, M., et al. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120(2), 237–248.PubMedCrossRefGoogle Scholar
  52. Marhold, M., Tomasich, E., El-Gazzar, A., et al. (2015). HIF1alpha regulates mTOR signaling and viability of prostate cancer stem cells. Molecular Cancer Research, 13(3), 556–564.PubMedCrossRefGoogle Scholar
  53. Masiero, E., Agatea, L., Mammucari, C., et al. (2009). Autophagy is required to maintain muscle mass. Cell Metabolism, 10(6), 507–515.PubMedCrossRefGoogle Scholar
  54. Matecic, M., Smith, D. L., Pan, X., et al. (2010). A microarray-based genetic screen for yeast chronological aging factors. PLoS Genetics, 6(4), e1000921.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mathew, R., Karp, C. M., Beaudoin, B., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6), 1062–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mathew, R., Kongara, S., Beaudoin, B., et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes and Development, 21(11), 1367–1381.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mazure, N. M., & Pouyssegur, J. (2009). Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy, 5(6), 868–869.PubMedCrossRefGoogle Scholar
  58. Meletis, K., Wirta, V., Hede, S. M., et al. (2006). p53 suppresses the self-renewal of adult neural stem cells. Development, 133(2), 363–369.PubMedCrossRefGoogle Scholar
  59. Michaud, M., Martins, I., Sukkurwala, A. Q., et al. (2011). Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 334(6062), 1573–1577.PubMedCrossRefGoogle Scholar
  60. Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Pan, H., Cai, N., Li, M., et al. (2013). Autophagic control of cell ‘stemness’. EMBO Molecular Medicine, 5(3), 327–331.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Papandreou, I., Lim, A. L., Laderoute, K., et al. (2008). Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death and Differentiation, 15(10), 1572–1581.PubMedCrossRefGoogle Scholar
  63. Phadwal, K., Watson, A. S., & Simon, A. K. (2013). Tightrope act: Autophagy in stem cell renewal, differentiation, proliferation, and aging. Cellular and Molecular Life Sciences, 70(1), 89–103.PubMedCrossRefGoogle Scholar
  64. Piskounova, E., Agathocleous, M., Murphy, M. M., et al. (2015). Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 527(7577), 186–191.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Qu, X., Yu, J., Bhagat, G., Furuya, N., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation, 112(12), 1809–1820.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., et al. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nature Genetics, 37(7), 771–776.PubMedCrossRefGoogle Scholar
  67. Ravikumar, B., Sarkar, S., Davies, J. E., et al. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews, 90(4), 1383–1435.PubMedCrossRefGoogle Scholar
  68. Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rubinsztein, D. C., Marino, G., & Kroemer, G. (2011). Autophagy and aging. Cell, 146(5), 682–695.PubMedCrossRefGoogle Scholar
  71. Rubinsztein, D. C., Ravikumar, B., Acevedo-Arozena, A., et al. (2005). Dyneins, autophagy, aggregation and neurodegeneration. Autophagy, 1(3), 177–178.PubMedCrossRefGoogle Scholar
  72. Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P., et al. (2010). Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: A systematic review. Annals of the Rheumatic Diseases, 69(1), 20–28.PubMedCrossRefGoogle Scholar
  73. Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: Physiology and pathology. Trends in Biochemical Sciences, 36(1), 30–38.PubMedCrossRefGoogle Scholar
  74. Shacka, J. J., Klocke, B. J., Shibata, M., et al. (2006). Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Molecular Pharmacology, 69(4), 1125–1136.PubMedCrossRefGoogle Scholar
  75. Shannon, A. M., Bouchier-Hayes, D. J., Condron, C. M., et al. (2003). Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treatment Reviews, 29(4), 297–307.PubMedCrossRefGoogle Scholar
  76. Simonsen, A., Cumming, R. C., Brech, A., et al. (2008). Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy, 4(2), 176–184.PubMedCrossRefGoogle Scholar
  77. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  78. Tan, B. T., Park, C. Y., Ailles, L. E., et al. (2006). The cancer stem cell hypothesis: A work in progress. Laboratory Investigation, 86(12), 1203–1207.PubMedCrossRefGoogle Scholar
  79. Tasdemir, E., Chiara Maiuri, M., Morselli, E., et al. (2008a). A dual role of p53 in the control of autophagy. Autophagy, 4(6), 810–814.PubMedCrossRefGoogle Scholar
  80. Tasdemir, E., Maiuri, M. C., Galluzzi, L., et al. (2008b). Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 10(6), 676–687.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tasdemir, E., Maiuri, M. C., Orhon, I., et al. (2008c). p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle, 7(19), 3006–3011.PubMedCrossRefGoogle Scholar
  82. Thiery, J. P., Acloque, H., Huang, R. Y., et al. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMedCrossRefGoogle Scholar
  83. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  84. Twig, G., Elorza, A., Molina, A. J., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 27(2), 433–446.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., et al. (2010). Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science, 329(5998), 1492–1499.PubMedCrossRefGoogle Scholar
  86. Vazquez-Martin, A., Cufi, S., Corominas-Faja, B., et al. (2012). Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: New insight into the role of mitophagy in cell stemness. Aging, 4(6), 393–401.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639–648.PubMedCrossRefGoogle Scholar
  88. Wang, C., Liang, C. C., Bian, Z. C., et al. (2008a). FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nature Neuroscience, 16(5), 532–542.CrossRefGoogle Scholar
  89. Wang, S., Xia, P., Ye, B., et al. (2013). Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell, 13(5), 617–625.PubMedCrossRefGoogle Scholar
  90. Wang, X., Zuo, X., Kucejova, B., et al. (2008b). Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nature Cell Biology, 10(9), 1090–1097.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Warr, M. R., Binnewies, M., Flach, J., Reynaud, D., Garg, T., Malhotra, R., et al. (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494(7437), 323–327.PubMedPubMedCentralCrossRefGoogle Scholar
  92. White, E., Karp, C., Strohecker, A. M., et al. (2010). Role of autophagy in suppression of inflammation and cancer. Current Opinion in Cell Biology, 22(2), 212–217.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wu, J. J., Quijano, C., Chen, E., et al. (2009). Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging, 1(4), 425–437.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Yu, S. W., Baek, S. H., Brennan, R. T., et al. (2008). Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells, 26(10), 2602–2610.PubMedCrossRefGoogle Scholar
  95. Yu, J., Parkhitko, A., & Henske, E. P. (2011). Autophagy: An ‘Achilles’ heel of tumorigenesis in TSC and LAM. Autophagy, 7(11), 1400–1401.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Yue, Z., Jin, S., Yang, C., et al. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15077–15082.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Zhang, J. (2013). Autophagy and mitophagy in cellular damage control. Redox Biology, 1(1), 19–23.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zhang, C., & Cuervo, A. M. (2008). Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nature Medicine, 14(9), 959–965.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zid, B. M., Rogers, A. N., Katewa, S. D., et al. (2009). 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell, 139(1), 149–160.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashington, DCUSA
  2. 2.NIH Stem Cell UnitNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA

Personalised recommendations