Skip to main content

Regulation of Autophagy by microRNAs: Implications in Cancer Therapy

  • Chapter
  • First Online:
  • 601 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

As an emerging hallmark of cancer, aberrant energy metabolism has drawn increasing attention in both basic research and clinical study. Autophagy is one of the main mechanisms for cells to maintain metabolic homeostasis, and cancer cells often display altered autophagic activity. Thus, autophagy is now pursued as a target for anti-cancer therapies. The current approaches to modulating autophagy include manipulation of either expressions or functions of the proteins that are key components of autophagic pathways. As a main post-transcriptional regulatory factor, microRNAs play important roles in various physiological and pathophysiological processes including cancers. Since miR-30a was first reported to regulate autophagy through targeting 3′ untranslated region (3′ UTR) of Beclin-1, a key autophagy regulatory gene, numerous miRNAs involved in autophagy regulation have been reported. Here we overview the current knowledge regarding the roles of miRNAs in regulation of autophagy and their implication in cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlakha, Y. K., & Saini, N. (2011). MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cellular and Molecular Life Sciences, 68(8), 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  • Aliabadi, H. M., Landry, B., Sun, C., Tang, T., & Uludag, H. (2012). Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials, 33(8), 2546–2569.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi, R. K., et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. Journal of Clinical Investigation, 117(2), 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology, 14(8), 475–488.

    Article  CAS  PubMed  Google Scholar 

  • Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579(26), 5830–5840.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: Cell fate control and signal integration in development. Science, 284(5415), 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Bader, A. G., Brown, D., Stoudemire, J., & Lammers, P. (2011). Developing therapeutic microRNAs for cancer. Gene Therapy, 18(12), 1121–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. L., & Baehrecke, E. H. (2008). Autophagy functions in programmed cell death. Autophagy, 4(3), 359–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bo, L., Su-Ling, D., Fang, L., Lu-Yu, Z., Tao, A., Stefan, D., et al. (2014). Autophagic program is regulated by miR-325. Cell Death and Differentiation, 21(6), 967–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchie, A. (2013). First microRNA mimic enters clinic. Nature Biotechnology, 31(7), 577.

    Article  CAS  PubMed  Google Scholar 

  • Braconi, C., Valeri, N., Gasparini, P., Huang, N., Taccioli, C., & Nuovo, G. (2010). Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clinical Cancer Research, 16(3), 957–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brest, P., Lapaquette, P., Souidi, M., Lebrigand, K., Cesaro, A., & Vouret-Craviari, V. (2011). A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nature Genetics, 43(3), 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y., Lin, J., & Tsung, A. (2012a). Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer. Autophagy, 8(12), 1833–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, Y., Yan, W., He, X., Zhang, L., Li, C., & Huang, H. (2012b). miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology, 143(1), 177–187 e8.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, A., Chattopadhyay, D., Chakrabarti, G. (2014). miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One, 9(4), e95716.

    Google Scholar 

  • Chen, Y., Fu, L. L., Wen, X., Liu, B., Huang, J., & Wang, J. H. (2014). Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis, 19(8), 1177–1189.

    Article  CAS  PubMed  Google Scholar 

  • Christoffersen, N. R., Shalgi, R., Frankel, L. B., Leucci, E., Lees, M., & Klausen, M. (2010). p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 17(2), 236–245.

    Article  CAS  PubMed  Google Scholar 

  • Cimino, D., De Pitta, C., Orso, F., Zampini, M., Casara, S., & Penna, E. (2013). miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB Journal, 27(3), 1223–1235.

    Article  CAS  PubMed  Google Scholar 

  • Ciuffreda, L., Di Sanza, C., Incani, U. C., & Milella, M. (2010). The mTOR pathway: A new target in cancer therapy. Current Cancer Drug Targets, 10(5), 484–495.

    Article  CAS  PubMed  Google Scholar 

  • Claerhout, S., Verschooten, L., Van Kelst, S., De Vos, R., Proby, C., & Agostinis, P. (2010). Concomitant inhibition of AKT and autophagy is required for efficient cisplatin-induced apoptosis of metastatic skin carcinoma. International Journal of Cancer, 127(12), 2790–2803.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J. W., & Longo, D. L. (2015). Cancer cell biology. In D. Kasper et al. (Eds.), Harrison’s principles of internal medicine, 19e. New York, NY: McGraw-Hill Education.

    Google Scholar 

  • Clarke, P. G., & Puyal, J. (2012). Autophagic cell death exists. Autophagy, 8(6), 867–869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Comincini, S., Allavena, G., Palumbo, S., Morini, M., Durando, F., & Angeletti, F. (2013). microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biology and Therapy, 14(7), 574–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cougot, N., Babajko, S., & Seraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. Journal of Cell Biology, 165(1), 31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, X., & Tan, C. (2015). Combination of microRNA therapeutics with small-molecule anticancer drugs: Mechanism of action and co-delivery nanocarriers. Advanced Drug Delivery Reviews, 81, 184–197.

    Article  CAS  PubMed  Google Scholar 

  • Dai, F., Zhang, Y., & Chen, Y. (2014). Involvement of miR-29b signaling in the sensitivity to chemotherapy in patients with ovarian carcinoma. Human Pathology, 45(6), 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  • Daka, A., & Peer, D. (2012). RNAi-based nanomedicines for targeted personalized therapy. Advanced Drug Delivery Reviews, 64(13), 1508–1521.

    Article  CAS  PubMed  Google Scholar 

  • Denton, D., Shravage, B., Simin, R., Mills, K., Berry, D. L., & Baehrecke, E. H. (2009). Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Current Biology, 19(20), 1741–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denton, D., Xu, T., & Kumar, S. (2015). Autophagy as a pro-death pathway. Immunology and Cell Biology, 93(1), 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. Journal of Cell Biology, 33(2), 437–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, X. Q., Ge, P. C., Liu, Z., Jia, H., Chen, X., & An, F. H. (2015). Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Scientific Reports, 5, 14925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donadelli, M., & Palmieri, M. (2013). Roles for microRNA 23b in regulating autophagy and development of pancreatic adenocarcinoma. Gastroenterology, 145(5), 936–938.

    Article  CAS  PubMed  Google Scholar 

  • Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development, 132(21), 4645–4652.

    Article  CAS  PubMed  Google Scholar 

  • Evdokimova, V., Ruzanov, P., Imataka, H., Raught, B., Svitkin, Y., & Ovchinnikov, L. P. (2001). The major mRNA-associated protein YB-1 is a potent 5′ cap-dependent mRNA stabilizer. EMBO Journal, 20(19), 5491–5502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Y., He, D., Yao, Z., & Klionsky, D. J. (2014). The machinery of macroautophagy. Cell Research, 24(1), 24–41.

    Article  CAS  PubMed  Google Scholar 

  • Fornari, F., Milazzo, M., Chieco, P., Negrini, M., Calin, G. A., & Grazi, G. L. (2010). MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Research, 70(12), 5184–5193.

    Article  CAS  PubMed  Google Scholar 

  • Frankel, L. B., & Lund, A. H. (2012). MicroRNA regulation of autophagy. Carcinogenesis, 33(11), 2018–2025.

    Article  CAS  PubMed  Google Scholar 

  • Frankel, L. B., Wen, J., Lees, M., Hoyer-Hansen, M., Farkas, T., & Krogh, A. (2011). microRNA-101 is a potent inhibitor of autophagy. EMBO Journal, 30(22), 4628–4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiya, M., Konishi, H., Mohamed Kamel, M. K., Ueno, N., Inaba, Y., & Moriichi, K. (2014). microRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1. Oncogene, 33(40), 4847–4856.

    Article  CAS  PubMed  Google Scholar 

  • Gao, M., Fritz, D. T., Ford, L. P., & Wilusz, J. (2000). Interaction between a poly(A)-specific ribonuclease and the 5’ cap influences mRNA deadenylation rates in vitro. Molecular Cell, 5(3), 479–488.

    Google Scholar 

  • Gibbings, D., Mostowy, S., Jay, F., Schwab, Y., Cossart, P., & Voinnet, O. (2012). Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nature Cell Biology, 14(12), 1314–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbings, D., Mostowy, S., & Voinnet, O. (2013). Autophagy selectively regulates miRNA homeostasis. Autophagy, 9(5), 781–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: Cellular and molecular mechanisms. Journal of Pathology, 221(1), 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordy, C., & He, Y. W. (2012). The crosstalk between autophagy and apoptosis: Where does this lead? Protein & Cell, 3(1), 17–27.

    Article  Google Scholar 

  • Gottlieb, R. A. (2010). Apoptosis. In M. A. Lichtman et al. (Eds.), Williams hematology. New York, NY: McGraw-Hill.

    Google Scholar 

  • Guo, J. Y., Xia, B., & White, E. (2013). Autophagy-mediated tumor promotion. Cell, 155(6), 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, S., Verma, S., Mantri, S., Berman, N. E., & Sandhir, R. (2015). Targeting MicroRNAs in Prevention and Treatment of Neurodegenerative Disorders. Drug Development and Research, 76(7), 397–418.

    Article  CAS  Google Scholar 

  • Gwak, H. S., Kim, T. H., Jo, G. H., Kim, Y. J., Kwak, H. J., & Kim, J. H. (2012). Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS One, 7(10), e47449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hailey, D. W., Rambold, A. S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., & Kim, P. K. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4), 656–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, D. P., Cost, N. G., Hegde, S., Kellner, E., Mikhaylova, O., & Stratton, Y. (2014). TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell, 26(5), 738–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harhaji-Trajkovic, L., Vilimanovich, U., Kravic-Stevovic, T., Bumbasirevic, V., & Trajkovic, V. (2009). AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumour cells. J Cell Mol Med, 13(9b), 3644–3654.

    Article  CAS  PubMed  Google Scholar 

  • Hock, J., & Meister, G. (2008). The Argonaute protein family. Genome Biology, 9(2), 210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., & Zhang, G. Z. (2011a). Biological functions of microRNAs: a review. Journal of Physiology and Biochemistry, 67(1), 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Chuang, A. Y., & Ratovitski, E. A. (2011b). Phospho-DeltaNp63alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle, 10(22), 3938–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Guerrero-Preston, R., & Ratovitski, E. A. (2012). Phospho-DeltaNp63alpha-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle, 11(6), 1247–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., & Ishihara, N. (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811), 488–492.

    Article  CAS  PubMed  Google Scholar 

  • Itakura, E., Kishi-Itakura, C., & Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 151(6), 1256–1269.

    Article  CAS  PubMed  Google Scholar 

  • Iwakawa, H. O., & Tomari, Y. (2015). The functions of MicroRNAs: mRNA decay and translational repression. Trends in Cell Biology, 25(11), 651–665.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, D., Chang, D., Marx, J., Wei, L., Olson, E. N., & Parmacek, M. S. (2006). Serum response factor MADS box serine-162 phosphorylation switches proliferation and myogenic gene programs. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4516–4521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, H. L., Reesink, H. W., Lawitz, E. J., Zeuzem, S., Rodriguez-Torres, M., & Patel, K. (2013). Treatment of HCV infection by targeting microRNA. New England Journal of Medicine, 368(18), 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, P., & Mizushima, N. (2014). Autophagy and human diseases. Cell Research, 24(1), 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., & Chen, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell, 120(5), 623–634.

    Article  CAS  PubMed  Google Scholar 

  • Jing, Z., Han, W., Sui, X., Xie, J., & Pan, H. (2015). Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Letters, 356(2 Pt B), 332–338.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, R. J., & Hobert, O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 426(6968), 845–849.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, R. J., Jr., Chang, S., Etchberger, J. F., Ortiz, C. O., & Hobert, O. (2005). MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12449–12454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminskyy, V., & Zhivotovsky, B. (2012). Proteases in autophagy. Biochimica et Biophysica Acta, 1824(1), 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation, 18(4), 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, V. N. (2006). Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes and Development, 20(15), 1993–1997.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz, G., le Sage, C., Tekirdag, K. A., Agami, R., & Gozuacik, D. (2012). miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy, 8(2), 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer, G., Marino, G., & Levine, B. (2010). Autophagy and the integrated stress response. Molecular Cell, 40(2), 280–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11(9), 597–610.

    CAS  PubMed  Google Scholar 

  • Lai, E. C. (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30(4), 363–364.

    Article  CAS  PubMed  Google Scholar 

  • Lan, S. H., Wu, S. Y., Zuchini, R., Lin, X. Z., Su, I. J., & Tsai, T. F. (2014a). Autophagy-preferential degradation of MIR224 participates in hepatocellular carcinoma tumorigenesis. Autophagy, 10(9), 1687–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, S. H., Wu, S. Y., Zuchini, R., Lin, X. Z., Su, I. J., & Tsai, T. F. (2014b). Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology, 59(2), 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Lavandero, S., Troncoso, R., Rothermel, B. A., Martinet, W., Sadoshima, J., & Hill, J. A. (2013). Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy, 9(10), 1455–1466.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., & Yim, J. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Leung, A. K. (2015). The whereabouts of microRNA actions: Cytoplasm and beyond. Trends in Cell Biology, 25(10), 601–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, A. K., Calabrese, J. M., & Sharp, P. A. (2006). Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18125–18130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, A. K., Vyas, S., Rood, J. E., Bhutkar, A., Sharp, P. A., & Chang, P. (2011). Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Molecular Cell, 42(4), 489–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4), 463–477.

    Article  CAS  PubMed  Google Scholar 

  • Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, B., & Kroemer, G. (2009). Autophagy in aging, disease and death: The true identity of a cell death impostor. Cell Death and Differentiation, 16(1), 1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. D., & Izaurralde, E. (1997). The role of the cap structure in RNA processing and nuclear export. European Journal of Biochemistry, 247(2), 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., & Vierstra, R. D. (2012). Autophagy: A multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 17(9), 526–537.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Xu, H. L., Liu, Y. X., An, N., Zhao, S., & Bao, J. K. (2013). Autophagy modulation as a target for anticancer drug discovery. Acta Pharmacologica Sinica, 34(5), 612–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., & Hibshoosh, H. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Liao, W. T., Ye, Y. P., Zhang, N. J., Li, T. T., Wang, S. Y., & Cui, Y. M. (2014). MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. Journal of Pathology, 232(4), 415–427.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., & Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biology, 7(7), 719–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. N., Yang, X., Suo, Z. W., Xu, Y. M., & Hu, X. D. (2014). Fyn kinase-regulated NMDA receptor- and AMPA receptor-dependent pain sensitization in spinal dorsal horn of mice. European Journal of Pain, 18(8), 1120–1128.

    Article  CAS  PubMed  Google Scholar 

  • Longatti, A., Lamb, C. A., Razi, M., Yoshimura, S., Barr, F. A., & Tooze, S. A. (2012). TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. Journal of Cell Biology, 197(5), 659–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Majid, S., Dar, A. A., Saini, S., Deng, G., Chang, I., & Greene, K. (2013). MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One, 8(7), e67686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menghini, R., Casagrande, V., Marino, A., Marchetti, V., Cardellini, M., & Stoehr, R. (2014). MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis, 5, e1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhaylova, O., Stratton, Y., Hall, D., Kellner, E., Ehmer, B., & Drew, A. F. (2012). VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell, 21(4), 532–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T. E., Ghoshal, K., Ramaswamy, B., Roy, S., Datta, J., & Shapiro, C. L. (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. Journal of Biological Chemistry, 283(44), 29897–29903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N. (2007). Autophagy: Process and function. Genes and Development, 21(22), 2861–2873.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N., & Komatsu, M. (2011). Autophagy: Renovation of cells and tissues. Cell, 147(4), 728–741.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N., Noda, T., & Ohsumi, Y. (1999). Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO Journal, 18(14), 3888–3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatogawa, H., Suzuki, K., Kamada, Y., & Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology, 10(7), 458–467.

    Article  CAS  PubMed  Google Scholar 

  • Oneyama, C., Ikeda, J., Okuzaki, D., Suzuki, K., Kanou, T., & Shintani, Y. (2011). MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene, 30(32), 3489–3501.

    Article  CAS  PubMed  Google Scholar 

  • Pan, B., Yi, J., & Song, H. (2013). MicroRNA-mediated autophagic signaling networks and cancer chemoresistance. Cancer Biotherapy and Radiopharmaceuticals, 28(8), 573–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., & Maller, B. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides, S., Tsirigos, A., Migneco, G., Whitaker-Menezes, D., Chiavarina, B., & Flomenberg, N. (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9(17), 3485–3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, X., Li, W., Yuan, L., Mehta, R. G., Kopelovich, L., & McCormick, D. L. (2013). Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS One, 8(8), e70442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennati, M., Lopergolo, A., Profumo, V., De Cesare, M., Sbarra, S., & Valdagni, R. (2014). miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochemical Pharmacology, 87(4), 579–597.

    Article  CAS  PubMed  Google Scholar 

  • Puri, C., Renna, M., Bento, C. F., Moreau, K., & Rubinsztein, D. C. (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6), 1285–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qased, A. B., Yi, H., Liang, N., Ma, S., Qiao, S., & Liu, X. (2013). MicroRNA-18a upregulates autophagy and ataxia telangiectasia mutated gene expression in HCT116 colon cancer cells. Molecular Medicine Reports, 7(2), 559–564.

    CAS  PubMed  Google Scholar 

  • Radogna, F., Dicato, M., & Diederich, M. (2015). Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochemical Pharmacology, 94(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Ramalinga, M., Roy, A., Srivastava, A., Bhattarai, A., Harish, V., & Suy, S. (2015). MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence. Oncotarget, 6(33), 34446–34457.

    PubMed  PubMed Central  Google Scholar 

  • Rao, S., Tortola, L., Perlot, T., Wirnsberger, G., Novatchkova, M., & Nitsch, R. (2014). A dual role for autophagy in a murine model of lung cancer. Nature Communications, 5, 3056.

    Google Scholar 

  • Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., & Rubinsztein, D. C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology, 12(8), 747–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., & Rougvie, A. E. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J. H., He, W. S., Nong, L., Zhu, Q. Y., Hu, K., & Zhang, R. G. (2010). Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. Cancer Biotherapy and Radiopharmaceuticals, 25(1), 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Russell, R. C., Yuan, H. X., & Guan, K. L. (2014). Autophagy regulation by nutrient signaling. Cell Research, 24(1), 42–57.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, A., Heller, D. A., Winslow, M. M., Dahlman, J. E., Pratt, G. W., & Langer, R. (2012). Treating metastatic cancer with nanotechnology. Nature Reviews Cancer, 12(1), 39–50.

    Article  CAS  Google Scholar 

  • Schweichel, J. U., & Merker, H. J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Sen, G. L., & Blau, H. M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biology, 7(6), 633–636.

    Article  CAS  PubMed  Google Scholar 

  • Seoudi, A. M., Lashine, Y. A., & Abdelaziz, A. I. (2012). MicroRNA-181a—A tale of discrepancies. Expert Reviews in Molecular Medicine, 14, e5.

    Article  PubMed  CAS  Google Scholar 

  • Shahbazi, J., Lock, R., & Liu, T. (2013). Tumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesis. Frontiers in Genetics, 4, 80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, Y., Chen, C., Zhang, X., Liu, Q., Xu, J. L., & Zhang, H. R. (2014). Primate-specific miR-663 functions as a tumor suppressor by targeting PIK3CD and predicts the prognosis of human glioblastoma. Clinical Cancer Research, 20(7), 1803–1813.

    Article  CAS  PubMed  Google Scholar 

  • Shintani, T., & Klionsky, D. J. (2004). Autophagy in health and disease: A double-edged sword. Science, 306(5698), 6.

    Article  CAS  Google Scholar 

  • Singh, S. B., Ornatowski, W., Vergne, I., Naylor, J., Delgado, M., & Roberts, E. (2010). Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nature Cell Biology, 12(12), 1154–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonenberg, N., & Gingras, A. C. (1998). The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Current Opinion in Cell Biology, 10(2), 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Stark, A., Brennecke, J., Russell, R. B., & Cohen, S. M. (2003). Identification of Drosophila MicroRNA targets. PLoS Biology, 1(3), E60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiuso, P., Potenza, N., Lombardi, A., Ferrandino, I., Monaco, A., & Zappavigna, S. (2015). MicroRNA-423-5p Promotes Autophagy in Cancer Cells and Is Increased in Serum From Hepatocarcinoma Patients Treated With Sorafenib. Molecular Therapy Nucleic Acids, 4, e233.

    Article  CAS  PubMed  Google Scholar 

  • Su, Z., Yang, Z., Xu, Y., Chen, Y., & Yu, Q. (2015). MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget, 6(11), 8474–8490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sui, X., Jin, L., Huang, X., Geng, S., He, C., & Hu, X. (2011). p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy, 7(6), 565–571.

    Article  CAS  PubMed  Google Scholar 

  • Sui, X., Zhu, J., Zhou, J., Wang, X., Li, D., & Han, W. (2015). Epigenetic modifications as regulatory elements of autophagy in cancer. Cancer Letters, 360(2), 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Sumbul, A. T., Gogebakan, B., Ergun, S., Yengil, E., Batmaci, C. Y., & Tonyali, O. (2014). miR-204-5p expression in colorectal cancer: an autophagy-associated gene. Tumour Biology, 35(12), 12713–12719.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Liu, T., Yuan, Y., Guo, Z., Xie, G., & Du, S. (2015). MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. International Journal of Cancer, 136(5), 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  • Tazawa, H., Yano, S., Yoshida, R., Yamasaki, Y., Sasaki, T., & Hashimoto, Y. (2012). Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis. International Journal of Cancer, 131(12), 2939–2950.

    Article  CAS  PubMed  Google Scholar 

  • van Solinge, W. W., & van Wijk, R. (2015). Erythrocyte enzyme disorders. In K. Kaushansky et al. (Eds.), Williams hematology. New York, NY: McGraw-Hill Education.

    Google Scholar 

  • Visa, N., Izaurralde, E., Ferreira, J., Daneholt, B., & Mattaj, I. W. (1996). A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. Journal of Cell Biology, 133(1), 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Wan, G., Xie, W., Liu, Z., Xu, W., Lao, Y., & Huang, N. (2014). Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy, 10(1), 70–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. W., & Klionsky, D. J. (2003). The molecular mechanism of autophagy. Molecular Medicine, 9(3–4), 65–76.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J., Yang, K., Zhou, L., Minhaowu, Wu, Y., & Zhu, M. (2013a). MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathogens, 9(10), e1003697.

    Google Scholar 

  • Wang, P., Zhang, J., Zhang, L., Zhu, Z., Fan, J., & Chen, L. (2013b). MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology, 145(5), 1133–1143.e12.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Zhang, L., Chen, Z., & Meng, Z. (2013c). MicroRNA targets autophagy in pancreatic cancer cells during cancer therapy. Autophagy, 9(12), 2171–2172.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., Ma, Z., Li, Y., Zhao, B., Wang, D., & Jin, Y. (2015). miR-143 inhibits cell proliferation by targeting autophagy-related 2B in non-small cell lung cancer H1299 cells. Molecular Medicine Reports, 11(1), 571–576.

    Google Scholar 

  • Weil, P. A. (2015). Regulation of gene expression. In V. W. Rodwell et al. (Eds.), Harper’s illustrated biochemistry, 30e. New York, NY: McGraw-Hill Education.

    Google Scholar 

  • Wilson, R. C., & Doudna, J. A. (2013). Molecular mechanisms of RNA interference. Annual Review of Biophysics, 42, 217–239.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Wang, F., Hu, S., Yin, C., Li, X., & Zhao, S. (2012). MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cellular Signalling, 24(11), 2179–2186.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H. J., Pu, J. L., Krafft, P. R., Zhang, J. M., & Chen, S. (2015). The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cellular and Molecular Neurobiology, 35(1), 85–99.

    Article  CAS  PubMed  Google Scholar 

  • Xu, N., Zhang, J., Shen, C., Luo, Y., Xia, L., & Xue, F. (2012). Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochemical and Biophysical Research Communications, 423(4), 826–831.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., An, Y., Wang, Y., Zhang, C., Zhang, H., & Huang, C. (2013). miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncology Reports, 29(5), 2019–2024.

    CAS  PubMed  Google Scholar 

  • Xu, L., Beckebaum, S., Iacob, S., Wu, G., Kaiser, G. M., & Radtke, A. (2014). MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. Journal of Hepatology, 60(3), 590–598.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., & Klionsky, D. J. (2010). Eaten alive: A history of macroautophagy. Nature Cell Biology, 12(9), 814–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Kong, W., He, L., Zhao, J. J., O’Donnell, J. D., & Wang, J. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Research, 68(2), 425–433.

    Google Scholar 

  • Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., & Ying, H. (2011). Pancreatic cancers require autophagy for tumor growth. Genes and Development, 25(7), 717–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Liu, L., Zhang, Y., Guan, H., Wu, J., & Zhu, X. (2014). MiR-503 targets PI3K p85 and IKK-beta and suppresses progression of non-small cell lung cancer. International Journal of Cancer, 135(7), 1531–1542.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Yang, L., Zhao, M., Zhu, S., Kang, R., & Vernon, P. (2012a). Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia, 26(8), 1752–1760.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Cao, L., Yang, L., Kang, R., Lotze, M., & Tang, D. (2012b). microRNA 30A promotes autophagy in response to cancer therapy. Autophagy, 8(5), 853–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L., Strandberg, L., & Lenardo, M. J. (2014). The selectivity of autophagy and its role in cell death and survival. Autophagy, 4(5), 567–573.

    Article  Google Scholar 

  • Yue, Z., Jin, S., Yang, C., Levine, A. J., & Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15077–15082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, H., Fesler, A., & Ju, J. (2013a). MicroRNA: a third dimension in autophagy. Cell Cycle, 12(2), 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, H., Song, B., Xu, X., Zhu, W., & Ju, J. (2013b). Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene, 32(12), 1570–1579.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., & Baehrecke, E. H. (2015). Eaten alive: Novel insights into autophagy from multicellular model systems. Trends in Cell Biology, 25(7), 376–387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Tang, J., Li, C., Kong, J., Wang, J., & Wu, Y. (2015a). MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Letters, 356(2 Pt B), 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Shi, H., Lin, S., Ba, M., & Cui, S. (2015b). MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncology Reports, 34(3), 1557–1564.

    PubMed  Google Scholar 

  • Zhao, Y., & Srivastava, D. (2007). A developmental view of microRNA function. Trends in Biochemical Sciences, 32(4), 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, G., Zhang, J. G., Liu, Y., Qin, Q., Wang, B., Tian, K., et al. (2013). miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Molecular Cancer Therapeutics, 12(1), 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, N., Wang, R., Zhou, L., Zhu, Y., Gong, J., & Zhuang, S. M. (2014). MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Molecular Cancer, 13, 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, S., Zhao, L., Kuang, M., Zhang, B., Liang, Z., Yi, T., et al. (2012). Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Letters, 323(2), 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H., Wu, H., Liu, X., Li, B., Chen, Y., Ren, X., et al. (2009). Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 5(6), 816–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, Z., Wu, L., Ding, H., Wang, Y., Zhang, Y., Chen, X., et al. (2012). MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. Journal of Biological Chemistry, 287(6), 4148–4156.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhu, H., Yang, JM. (2016). Regulation of Autophagy by microRNAs: Implications in Cancer Therapy. In: Yang, JM. (eds) Targeting Autophagy in Cancer Therapy. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-42740-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42740-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42738-6

  • Online ISBN: 978-3-319-42740-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics