Skip to main content

Small-Molecule Regulators of Autophagy as Potential Anti-cancer Therapy

  • Chapter
  • First Online:
Targeting Autophagy in Cancer Therapy

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Autophagy is an evolutionary conserved lysosomal pathway functioned in the turnover of cellular macromolecules and organelles. It is known that autophagy can have a cytoprotective effect in tumor cells under therapeutic treatment. Autophagy inhibitors thus may be used as auxiliary drugs to augment the anti-tumor activity of cancer therapies. On the other hand, autophagy is a cytotoxic event that can kill tumor cells. Autophagy inducers that increase the level of autophagy thus may be developed as a new class of anti-cancer therapy. This chapter will describe the known pathway of autophagy and its relationship to cancer. The focus of this chapter is to give a summary of the known small-molecule regulators of autophagy, including inhibitors and inducers, discovered as potential therapies for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin, D., Wang, S. K., Habibzadegah-Tari, P., Law, B., Ostrov, D., Li, M., et al. (2014). A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy, 10(11), 2021–2035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albert, J. M., Kim, K. W., Cao, C., & Lu, B. (2006). Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Molecular Cancer Therapeutics, 5(5), 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, A. A., Aboukameel, A., Chen, J., Yang, D., Wang, S., Al-Katib, A., et al. (2008). Preclinical studies of Apogossypolone: A new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in Follicular Small Cleaved Cell Lymphoma model. Molecular Cancer, 7, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azad, M. B., Chen, Y., Henson, E. S., Cizeau, J., McMillan-Ward, E., Israels, S. J., et al. (2008). Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy, 4(2), 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Baek, K. H., Park, J., & Shin, I. (2012). Autophagy-regulating small molecules and their therapeutic applications. Chemical Society Reviews, 41(8), 3245–3263.

    Article  CAS  PubMed  Google Scholar 

  • Balic, A., Sorensen, M. D., Trabulo, S. M., Sainz, B., Jr., Cioffi, M., Vieira, C. R., et al. (2014). Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Molecular Cancer Therapeutics, 13(7), 1758–1771.

    Article  CAS  PubMed  Google Scholar 

  • Bases, R. E., & Mendez, F. (1997). Topoisomerase inhibition by lucanthone, an adjuvant in radiation therapy. International Journal of Radiation Oncology, Biology, and Physics, 37(5), 1133–1137.

    Article  CAS  Google Scholar 

  • Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H., & Meijer, A. J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. European Journal of Biochemistry, 243(1–2), 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Bonapace, L., Bornhauser, B. C., Schmitz, M., Cario, G., Ziegler, U., Niggli, F. K., et al. (2010). Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. Journal of Clinical Investigation, 120(4), 1310–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, C., Subhawong, T., Albert, J. M., Kim, K. W., Geng, L., Sekhar, K. R., et al. (2006). Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Research, 66(20), 10040–10047.

    Article  CAS  PubMed  Google Scholar 

  • Carew, J. S., Espitia, C. M., Esquivel, J. A., 2nd, Mahalingam, D., Kelly, K. R., Reddy, G., et al. (2011). Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. Journal of Biological Chemistry, 286(8), 6602–6613.

    Article  CAS  PubMed  Google Scholar 

  • Cerny, J., Feng, Y., Yu, A., Miyake, K., Borgonovo, B., Klumperman, J., et al. (2004). The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing. EMBO Reports, 5(9), 883–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. J., Chi, C. W., Su, W. C., & Huang, H. L. (2014). Lapatinib induces autophagic cell death and inhibits growth of human hepatocellular carcinoma. Oncotarget, 5(13), 4845–4854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Mei, Q., Xu, Y. C., Du, J., Wei, Y., & Xu, Z. M. (2006). Effects of matrine injection on T-lymphocyte subsets of patients with malignant tumor after gamma knife radiosurgery. Zhong Xi Yi Jie He Xue Bao, 4(1), 78–79.

    Article  PubMed  Google Scholar 

  • Chen, S., Zhu, X., Qiao, H., Ye, M., Lai, X., Yu, S., et al. (2015). Protective autophagy promotes the resistance of HER2-positive breast cancer cells to lapatinib. Tumour Biology. DIALOG. Retrieved September 14, 2015, from http://link.springer.com/article/10.1007%2Fs13277-015-3800-9

  • Clarke, P. G. (1990). Developmental cell death: Morphological diversity and multiple mechanisms. Anatomy and Embryology, 181(3), 195–213.

    Article  CAS  PubMed  Google Scholar 

  • Deng, L., Lei, Y., Liu, R., Li, J., Yuan, K., Li, Y., et al. (2013). Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death & Disease, 4, e614.

    Article  CAS  Google Scholar 

  • Donadelli, M., Dando, I., Zaniboni, T., Costanzo, C., Dalla Pozza, E., Scupoli, M. T., et al. (2011). Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death & Disease, 2, e152.

    Article  CAS  Google Scholar 

  • Fleming, A., Noda, T., Yoshimori, T., & Rubinsztein, D. C. (2011). Chemical modulators of autophagy as biological probes and potential therapeutics. Nature Chemical Biology, 7(1), 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Frisch, S. M., & Screaton, R. A. (2001). Anoikis mechanisms. Current Opinion in Cell Biology, 13(5), 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Fu, J., Shao, C. J., Chen, F. R., Ng, H. K., & Chen, Z. P. (2010). Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-Oncology, 12(4), 328–340.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, T., Oda, K., Wada-Hiraike, O., Sone, K., Inaba, K., Ikeda, Y., et al. (2015). The anti-malarial chloroquine suppresses proliferation and overcomes cisplatin resistance of endometrial cancer cells via autophagy inhibition. Gynecologic Oncology, 137(3), 538–545.

    Article  CAS  PubMed  Google Scholar 

  • Fulda, S., & Kogel, D. (2015). Cell death by autophagy: Emerging molecular mechanisms and implications for cancer therapy. Oncogene, 34(40), 5105–5113.

    Article  CAS  PubMed  Google Scholar 

  • Fung, C., Lock, R., Gao, S., Salas, E., & Debnath, J. (2008). Induction of autophagy during extracellular matrix detachment promotes cell survival. Molecular Biology of the Cell, 19(3), 797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewirtz, D. A. (2014). The four faces of autophagy: Implications for cancer therapy. Cancer Research, 74(3), 647–651.

    Article  CAS  PubMed  Google Scholar 

  • Goussetis, D. J., Altman, J. K., Glaser, H., McNeer, J. L., Tallman, M. S., & Platanias, L. C. (2010). Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide. Journal of Biological Chemistry, 285(39), 29989–29997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green, D. R., & Levine, B. (2014). To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 157(1), 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R. J. (2008). Review article: The role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics, 27(2), 104–119.

    Article  CAS  PubMed  Google Scholar 

  • Harada, M., Sakisaka, S., Yoshitake, M., Kin, M., Ohishi, M., Shakado, S., et al. (1996). Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPases, inhibits the receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes. Journal of Hepatology, 24(5), 594–603.

    Article  CAS  PubMed  Google Scholar 

  • He, J. H., Liao, X. L., Wang, W., Li, D. D., Chen, W. D., Deng, R., et al. (2014). Apogossypolone, a small-molecule inhibitor of Bcl-2, induces radiosensitization of nasopharyngeal carcinoma cells by stimulating autophagy. International Journal of Oncology, 45(3), 1099–1108.

    CAS  PubMed  Google Scholar 

  • Heidari, N., Hicks, M. A., & Harada, H. (2010). GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death & Disease, 1, e76.

    Article  CAS  Google Scholar 

  • Homewood, C. A., Warhurst, D. C., Peters, W., & Baggaley, V. C. (1972). Lysosomes, pH and the anti-malarial action of chloroquine. Nature, 235(5332), 50–52.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer-Hansen, M., Bastholm, L., Szyniarowski, P., Campanella, M., Szabadkai, G., Farkas, T., et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Molecular Cell, 25(2), 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Hansen, M., & Jaattela, M. (2007). Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death and Differentiation, 14(9), 1576–1582.

    Article  CAS  PubMed  Google Scholar 

  • Jangamreddy, J. R., Panigrahi, S., & Los, M. J. (2015). Monitoring of autophagy is complicated—Salinomycin as an example. Biochimica et Biophysica Acta, 1853(3), 604–610.

    Article  CAS  PubMed  Google Scholar 

  • Jazirehi, A. R. (2010). Regulation of apoptosis-associated genes by histone deacetylase inhibitors: Implications in cancer therapy. Anti-Cancer Drugs, 21(9), 805–813.

    Article  CAS  PubMed  Google Scholar 

  • Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., et al. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular Biology of the Cell, 20(7), 1992–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. C., & Guan, K. L. (2015). mTOR: A pharmacologic target for autophagy regulation. Journal of Clinical Investigation, 125(1), 25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kim, Y. C., Fang, C., Russell, R. C., Kim, J. H., Fan, W., et al. (2013a). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 152(1–2), 290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Kim, Y. S., Kim, D. E., Lee, J. S., Song, J. H., Kim, H. G., et al. (2013b). BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy, 9(12), 2126–2139.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, T., Takabatake, Y., Takahashi, A., & Isaka, Y. (2013). Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Research, 73(1), 3–7.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., Shankar, S., & Srivastava, R. K. (2014). Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Letters, 343(2), 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Singh, U. K., & Chaudhary, A. (2015). Targeting autophagy to overcome drug resistance in cancer therapy. Future Medicinal Chemistry, 7(12), 1535–1542.

    Article  CAS  PubMed  Google Scholar 

  • Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng, S., Hao, Y., Du, D., Xie, S., Hong, L., Gu, H., et al. (2013). Ursolic acid promotes cancer cell death by inducing Atg5-dependent autophagy. International Journal of Cancer, 133(12), 2781–2790.

    CAS  PubMed  Google Scholar 

  • Levy, J. M., & Thorburn, A. (2011). Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacology and Therapeutics, 131(1), 130–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T. L., Su, L., Zhong, N., Hao, X. X., Zhong, D. S., Singhal, S., et al. (2013). Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy, 9(7), 1057–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Li, J., Zhang, T., Zou, L., Chen, Y., Wang, K., et al. (2014). Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking. Autophagy, 10(7), 1241–1255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, T., Song, Y., Chen, H., Pan, S., & Sun, X. (2010). Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biological and Pharmaceutical Bulletin, 33(10), 1740–1745.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., Dong, S., Hao, B., Li, C., Zhu, K., Guo, W., et al. (2014). Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy, 10(11), 1895–1905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maira, S. M., Stauffer, F., Schnell, C., & Garcia-Echeverria, C. (2009). PI3K inhibitors for cancer treatment: Where do we stand? Biochemical Society Transactions, 37(Pt 1), 265–272.

    Article  CAS  PubMed  Google Scholar 

  • Marino, G., Niso-Santano, M., Baehrecke, E. H., & Kroemer, G. (2014). Self-consumption: The interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 15(2), 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino, G., Salvador-Montoliu, N., Fueyo, A., Knecht, E., Mizushima, N., & Lopez-Otin, C. (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. Journal of Biological Chemistry, 282(25), 18573–18583.

    Article  CAS  PubMed  Google Scholar 

  • Mathew, R., Karantza-Wadsworth, V., & White, E. (2007). Role of autophagy in cancer. Nature Reviews Cancer, 7(12), 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvezin, C., & Neufeld, T. P. (2015). Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 11(8), 1437–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maycotte, P., & Thorburn, A. (2011). Autophagy and cancer therapy. Cancer Biology and Therapy, 11(2), 127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, W. H., Jr., Schipper, H. M., Lee, J. S., Singer, J., & Waxman, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Research, 62(14), 3893–3903.

    CAS  PubMed  Google Scholar 

  • Nagelkerke, A., Bussink, J., Geurts-Moespot, A., Sweep, F. C., & Span, P. N. (2015). Therapeutic targeting of autophagy in cancer. Part II: Pharmacological modulation of treatment-induced autophagy. Seminars in Cancer Biology, 31, 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Kikukawa, Y., Takeya, M., Mitsuya, H., & Hata, H. (2010). Clarithromycin attenuates autophagy in myeloma cells. International Journal of Oncology, 37(4), 815–820.

    Article  CAS  PubMed  Google Scholar 

  • Nam, H. Y., Han, M. W., Chang, H. W., Lee, Y. S., Lee, M., Lee, H. J., et al. (2013). Radioresistant cancer cells can be conditioned to enter senescence by mTOR inhibition. Cancer Research, 73(14), 4267–4277.

    Article  CAS  PubMed  Google Scholar 

  • Niu, X., Li, S., Wei, F., Huang, J., Wu, G., Xu, L., et al. (2014). Apogossypolone induces autophagy and apoptosis in breast cancer MCF-7 cells in vitro and in vivo. Breast Cancer, 21(2), 223–230.

    Article  PubMed  Google Scholar 

  • Nomura, T., & Katunuma, N. (2005). Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. The Journal of Medical Investigation, 52(1–2), 1–9.

    Article  PubMed  Google Scholar 

  • Pattingre, S., & Levine, B. (2006). Bcl-2 inhibition of autophagy: A new route to cancer? Cancer Research, 66(6), 2885–2888.

    Article  CAS  PubMed  Google Scholar 

  • Plumbridge, T. W., & Brown, J. R. (1978). Studies on the mode of interaction of 4′-epi-adriamycin and 4-demethoxy-daunomycin with DNA. Biochemical Pharmacology, 27(14), 1881–1882.

    Article  CAS  PubMed  Google Scholar 

  • Polivka, J., Jr., & Janku, F. (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology and Therapeutics, 142(2), 164–175.

    Article  CAS  PubMed  Google Scholar 

  • Powis, G., Bonjouklian, R., Berggren, M. M., Gallegos, A., Abraham, R., Ashendel, C., et al. (1994). Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Research, 54(9), 2419–2423.

    CAS  PubMed  Google Scholar 

  • Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation, 112(12), 1809–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racoma, I. O., Meisen, W. H., Wang, Q. E., Kaur, B., & Wani, A. A. (2013). Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One, 8(9), e72882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renna, M., Schaffner, C., Brown, K., Shang, S., Tamayo, M. H., Hegyi, K., et al. (2011). Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. Journal of Clinical Investigation, 121(9), 3554–3563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristic, B., Bosnjak, M., Arsikin, K., Mircic, A., Suzin-Zivkovic, V., Bogdanovic, A., et al. (2014). Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Experimental Cell Research, 326(1), 90–102.

    Article  CAS  PubMed  Google Scholar 

  • Ronan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., et al. (2014). A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nature Chemical Biology, 10(12), 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  • Rubiolo, J. A., Lopez-Alonso, H., Martinez, P., Millan, A., Cagide, E., Vieytes, M. R., et al. (2014). Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cellular Signalling, 26(2), 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Salabei, J. K., Balakumaran, A., Frey, J. C., Boor, P. J., Treinen-Moslen, M., & Conklin, D. J. (2012). Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy. Toxicology and Applied Pharmacology, 262(3), 265–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seglen, P. O., & Gordon, P. B. (1982). 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 79(6), 1889–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, Y., Gao, Z., Marks, P. A., & Jiang, X. (2004). Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18030–18035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., et al. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biology, 6(12), 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Konishi, A., Nishida, Y., Mizuta, T., Nishina, H., Yamamoto, A., et al. (2010). Involvement of JNK in the regulation of autophagic cell death. Oncogene, 29(14), 2070–2082.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Yoshida, T., Tsujioka, M., & Arakawa, S. (2014). Autophagic cell death and cancer. International Journal of Molecular Sciences, 15(2), 3145–3153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sosa, M. S., Bragado, P., Debnath, J., & Aguirre-Ghiso, J. A. (2013). Regulation of tumor cell dormancy by tissue microenvironments and autophagy. Advances in Experimental Medicine & Biology, 734, 73–89.

    Article  CAS  Google Scholar 

  • Takahashi, A., Kimura, F., Yamanaka, A., Takebayashi, A., Kita, N., Takahashi, K., et al. (2014). Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell International, 14, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamai, M., Matsumoto, K., Omura, S., Koyama, I., Ozawa, Y., & Hanada, K. (1986). In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. Journal of Pharmacobio-Dynamics, 9(8), 672–677.

    Article  CAS  PubMed  Google Scholar 

  • Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., & Kominami, E. (2005). Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy, 1(2), 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Thorburn, A., Thamm, D. H., & Gustafson, D. L. (2014). Autophagy and cancer therapy. Molecular Pharmacology, 85(6), 830–838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorne, C. A., Hanson, A. J., Schneider, J., Tahinci, E., Orton, D., Cselenyi, C. S., et al. (2010). Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature Chemical Biology, 6(11), 829–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa, H., Aoyagi, T., Morishima, H., Matsuzaki, M., & Hamada, M. (1970). Pepstatin, a new pepsin inhibitor produced by Actinomycetes. Journal of Antibiotics, 23(5), 259–262.

    Article  CAS  PubMed  Google Scholar 

  • Vlahos, C. J., Matter, W. F., Hui, K. Y., & Brown, R. F. (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). Journal of Biological Chemistry, 269(7), 5241–5248.

    CAS  PubMed  Google Scholar 

  • Voss, V., Senft, C., Lang, V., Ronellenfitsch, M. W., Steinbach, J. P., Seifert, V., et al. (2010). The pan-Bcl-2 inhibitor (-)-gossypol triggers autophagic cell death in malignant glioma. Molecular Cancer Research, 8(7), 1002–1016.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Kuramitsu, Y., Tokuda, K., Baron, B., Kitagawa, T., Akada, J., et al. (2014). Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS One, 9(10), e109076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Z., Zhang, J., Wang, Y., Xing, R., Yi, C., Zhu, H., et al. (2013). Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis, 34(1), 128–138.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., Adachi, S., Matsubara, H., Imai, T., Yui, Y., Mizushima, Y., et al. (2009). Induction of autophagy in malignant rhabdoid tumor cells by the histone deacetylase inhibitor FK228 through AIF translocation. International Journal of Cancer, 124(1), 55–67.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Y., Kadia, T., Tong, W., Zhang, M., Jia, Y., Yang, H., et al. (2010). The combination of a histone deacetylase inhibitor with the BH3-mimetic GX15-070 has synergistic antileukemia activity by activating both apoptosis and autophagy. Autophagy, 6(7), 976–978.

    Article  PubMed  Google Scholar 

  • Wirth, M., Joachim, J., & Tooze, S. A. (2013). Autophagosome formation—The role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Seminars in Cancer Biology, 23(5), 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Wong, V. K., Li, T., Law, B. Y., Ma, E. D., Yip, N. C., Michelangeli, F., et al. (2013). Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death & Disease, 4, e720.

    Article  CAS  Google Scholar 

  • Wu, L., & Yan, B. (2011). Discovery of small molecules that target autophagy for cancer treatment. Current Medicinal Chemistry, 18(12), 1866–1873.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, S., Tanaka, K., Sakimura, R., Okada, T., Nakamura, T., Li, Y., et al. (2008). Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines. Anticancer Research, 28(3A), 1585–1591.

    CAS  PubMed  Google Scholar 

  • You, D., Kim, Y., Jang, M. J., Lee, C., Jeong, I. G., Cho, Y. M., et al. (2015). KML001 induces apoptosis and autophagic cell death in prostate cancer cells via oxidative stress pathway. PLoS One, 10(9), e0137589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, H. C., Lin, C. S., Tai, W. T., Liu, C. Y., Shiau, C. W., & Chen, K. F. (2013). Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation. Journal of Biological Chemistry, 288(25), 18249–18259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, W., Hamai, A., Tonelli, G., Bauvy, C., Nicolas, V., Tharinger, H., et al. (2013). Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy, 9(5), 714–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. Q., Huang, X. F., Hu, X. B., Zhan, Y. H., An, Q. X., Yang, S. M., et al. (2010). Apogossypolone, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces autophagy of PC-3 and LNCaP prostate cancer cells in vitro. Asian Journal of Andrology, 12(5), 697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Richon, V., Ni, X., Talpur, R., & Duvic, M. (2005). Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. Journal of Investigative Dermatology, 125(5), 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., & Wang, R. (2013). Small-molecule regulators of autophagy and their potential therapeutic applications. ChemMedChem, 8(5), 694–707.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X. X., Yao, X. F., Jiang, L. P., Geng, C. Y., Zhong, L. F., Yang, G., et al. (2014). Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic beta-cells. Food and Chemical Toxicology, 70, 144–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Q., Zhou, M., Wang, R. (2016). Small-Molecule Regulators of Autophagy as Potential Anti-cancer Therapy. In: Yang, JM. (eds) Targeting Autophagy in Cancer Therapy. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-42740-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42740-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42738-6

  • Online ISBN: 978-3-319-42740-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics