Skip to main content

Autophagy in Cancer Cells vs. Cancer Tissues: Two Different Stories

  • Chapter
  • First Online:
  • 648 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Autophagy has been considered strongly associated with cancer development and possibly playing important roles in cancer progression. Here we present a computational study of transcriptomic data of cancer tissues, totaling 6317 tissue samples of 11 cancer types along with tissues of inflammatory diseases and cell line based experiments for comparative purposes. Our study clearly revealed that some widely held beliefs and speculations regarding autophagy in cancer may not be well founded, knowing that many of the previous observations were made on cancer cells cultured in man-made environments rather than actual cancer tissues. Our major findings include: (i) the widely used assumption that cancer tissue cells are nutrient depleted is not supported by our tissue-based gene-expression data analysis; (ii) the 11 cancer types studied fall into 2 distinct groups: those with low macro-autophagy (LM) activities and those with high lysosome (HL) activities but induced by micro-autophagy and chaperon-mediated autophagy; (ii) co-reduction in autophagy and apoptosis are widely observed in cancer tissues; (iii) down-regulated autophagy strongly correlates with up-regulated cell-cycle progression genes across all cancer types, with one possible functional link detected that repressed autophagosome formation may reduce the degradation of cellular organelles that are essential to cytokinesis, hence contributing to cell cycle progression; (iv) significant correlation is observed between autophagy and immune activities; (v) the down-regulated macro-autophagy genes negatively correlate with the total mutation rates in cancer genomes in LM cancers; and (vi) conditional correlation analyses point to a very unexpected direction: cellular Fenton reactions may be the cause of the decreased macro-autophagy and its co-expression with apoptosis, increased cell proliferation, genomic mutation rate and even possibly immune response. The information derived here may shed new light on elucidation of fundamental relationships between cancer and autophagy as well as on how to take advantage of the derived relationship for improved treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adekola, K., Rosen, S. T., & Shanmugam, M. (2012). Glucose transporters in cancer metabolism. Current Opinion in Oncology, 24(6), 650–654.

    Article  CAS  PubMed  Google Scholar 

  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). The Michaelis-Menten model accounts for the kinetic properties of many enzymes. New York: WH Freeman.

    Google Scholar 

  • Chi Zhang, F. Y., & Xu, Y (2016). Elucidation of fundamental differences between cancer prone and cancer independent chronic inflammatory diseases (in preparation). http://csbl.bmb.uga.edu/~zhangchi/FentonReaction/index.html.

  • Coller, H. A. (2014). Is cancer a metabolic disease? The American Journal of Pathology, 184(1), 4–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1), 51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsche, K. (2006). Fatty acids as modulators of the immune response. Annual Review of Nutrition, 26, 45–73.

    Article  CAS  PubMed  Google Scholar 

  • Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesman, M. M., Foto, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2(1), 48–58.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. (2011). Autophagy and cytokines. Cytokine, 56(2), 140–144.

    Article  CAS  PubMed  Google Scholar 

  • Hui Yan, C. Z., Dong, N., Sheng, T., & Xu, Y. (2016). Fenton reactions are a fundamental driver of cell division in cancer (under review). http://csbl.bmb.uga.edu/~zhangchi/FentonReaction/index.html.

  • Kuo, T.-C., Chen, C. T., Baron, D., Onder, T. T., Loewer, S., Almeida, S., et al. (2011). Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nature Cell Biology, 13(10), 1214–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapaquette, P., Guzzo, J., Bretillon, L., & Bringer, M. A. (2015). Cellular and molecular connections between autophagy and inflammation. Mediators of Inflammation, 2015, 398483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W.-W., Li, J., & Bao, J. K. (2012). Microautophagy: Lesser-known self-eating. Cellular and Molecular Life Sciences, 69(7), 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Lim, H. Y., Ho, Q. S., Low, J., Choolani, M., & Wong, K. P. (2011). Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion, 11(3), 437–443.

    Article  CAS  PubMed  Google Scholar 

  • Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Mathew, R., Karantza-Wadsworth, V., & White, E. (2007). Role of autophagy in cancer. Nature Reviews Cancer, 7(12), 961–967.

    Google Scholar 

  • Mathew, R., Kongara, S., Beaudoin, B., Karp, C. M., Bray, K., Degenhardt, K., et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes & Development, 21(11), 1367–1381

    Google Scholar 

  • Matsui, A., Kamada, Y., & Matsuura, A. (2013). The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genetics, 9(1), e1003245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N. (2007). Autophagy: Process and function. Genes & Development, 21(22), 2861–2873.

    Article  CAS  Google Scholar 

  • Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 15(3), 1101–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307(5709), 593–596.

    Article  CAS  PubMed  Google Scholar 

  • Pohl, C., & Jentsch, S. (2009). Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nature Cell Biology, 11(1), 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S. V., Hefner-Gravink, A., Morano, K. A., Noda, T., Ohsumi, Y., & Klionsky, D. J. (1996). Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proceedings of the National Academy of Sciences, 93(22), 12304–12308.

    Article  CAS  Google Scholar 

  • Shanware, N. P., Bray, K., & Abraham, R. T. (2013). The PI3K, metabolic, and autophagy networks: Interactive partners in cellular health and disease. Annual Review of Pharmacology and Toxicology, 53, 89–106.

    Article  CAS  PubMed  Google Scholar 

  • Su, M., Mei, Y., Sinha, S. (2013). Role of the crosstalk between autophagy and apoptosis in cancer. Journal of Oncology 2013, 14.

    Google Scholar 

  • Tang, S.-W., Ducroux, A., Jeang, K. T., & Neuveut, C. (2012). Impact of cellular autophagy on viruses: Insights from hepatitis B virus and human retroviruses. Journal of Biomedical Science, 19, 92. doi:10.1186/1423-0127-19-92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waris, G., & Ahsan, H. (2006). Reactive oxygen species: Role in the development of cancer and various chronic conditions. Journal of Carcinogenesis, 5(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Du, N. D., & Xu, Y (2016). On fundamental differences between cancer tissue cells and cancer cell lines (in preparation). http://csbl.bmb.uga.edu/~zhangchi/FentonReaction/index.html.

  • Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., et al. (2013). The cancer genome atlas pan-cancer analysis project. Nature Genetics, 45(10), 1113–1120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters, 82, 969–974.

    Article  PubMed  Google Scholar 

  • Zhang, X.-L. (2006). Roles of glycans and glycopeptides in immune system and immune-related diseases. Current Medicinal Chemistry, 13(10), 1141–1147.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Liu, C., Cao, S., & Xu, Y. (2015). Elucidation of drivers of high-level production of lactates throughout a cancer development. Journal of Molecular Cell Biology, 7(3), 267–279.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., Li, H., & Xue, D. (2011). Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans. Cell Research, 21(12), 1662–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, C. et al. (2016). Autophagy in Cancer Cells vs. Cancer Tissues: Two Different Stories. In: Yang, JM. (eds) Targeting Autophagy in Cancer Therapy. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-42740-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42740-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42738-6

  • Online ISBN: 978-3-319-42740-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics