Advertisement

Constructive generation methods for dungeons and levels

  • Noor ShakerEmail author
  • Antonios Liapis
  • Julian Togelius
  • Ricardo Lopes
  • Rafael Bidarra
Chapter
Part of the Computational Synthesis and Creative Systems book series (CSACS)

Abstract

This chapter addresses a specific type of game content, the dungeon, and a number of commonly used methods for generating such content. These methods are all “constructive”, meaning that they run in fixed (usually short) time, and do not evaluate their output in order to re-generate it. Most of these methods are also relatively simple to implement. And while dungeons, or dungeon-like environments, occur in a very large number of games, these methods can often be made to work for other types of content as well. We finish the chapter by talking about some constructive generation methods for Super Mario Bros. levels.

Keywords

Cellular Automaton Leaf Node Player Action Graph Grammar Shape Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, D.: Automatic generation of dungeons for computer games (2002). B.Sc. thesis, University of Sheffield, UKGoogle Scholar
  2. 2.
    Dahlskog, S., Togelius, J.: Patterns as objectives for level generation. In: Proceedings of the Second Workshop on Design Patterns in the 8th International Conference on the Foundations of Digital Games (2013)Google Scholar
  3. 3.
    Dormans, J.: Adventures in level design: generating missions and spaces for action adventure games. In: PCG’10: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, pp. 1 –8. ACM (2010)Google Scholar
  4. 4.
    Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular automata for real-time generation of infinite cave levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games (2010)Google Scholar
  5. 5.
    5. Karakovskiy, S., Togelius, J.: The Mario AI benchmark and competitions. IEEE Transactions on Computational Intelligence and AI in Games 4(1), 55–67 (2012)Google Scholar
  6. 6.
  7. 7.
    Kerssemakers, M., Tuxen, J., Togelius, J., Yannakakis, G.: A procedural procedural level generator generator. In: IEEE Conference on Computational Intelligence and Games (CIG), pp. 335–341. IEEE (2012)Google Scholar
  8. 8.
    Van der Linden, R., Lopes, R., Bidarra, R.: Designing procedurally generated levels. In: Proceedings of the the 2nd AIIDE Workshop on Artificial Intelligence in the Game Design Process, pp. 41–47 (2013)Google Scholar
  9. 9.
    9. Van der Linden, R., Lopes, R., Bidarra, R.: Procedural generation of dungeons. IEEE Transactions on Computational Intelligence and AI in Games 6(1), 78–89 (2014)Google Scholar
  10. 10.
  11. 11.
    Mawhorter, P., Mateas, M.: Procedural level generation using occupancy-regulated extension. In: IEEE Symposium on Computational Intelligence and Games (CIG), pp. 351 –358 (2010)Google Scholar
  12. 12.
    Nintendo Creative Department: (1985). Super Mario Bros., NintendoGoogle Scholar
  13. 13.
    Ortega, J., Shaker, N., Togelius, J., Yannakakis, G.N.: Imitating human playing styles in Super Mario Bros. Entertainment Computing pp. 93–104 (2012)Google Scholar
  14. 14.
    Persson, M.: Infinite Mario Bros. URL http://www.mojang.com/notch/mario/
  15. 15.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation: Volume I. Foundations. World Scientific (1997)Google Scholar
  16. 16.
    Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., O’Neill, M.: Evolving levels for Super Mario Bros. using grammatical evolution. In: IEEE Conference on Computational Intelligence and Games (CIG), pp. 304–311 (2012) 3 Constructive generation methods for dungeons and levels 55Google Scholar
  17. 17.
    Shaker, N., Togelius, J., Karakovskiy, S., Yannakakis, G.: Mario AI Championship. URL http://marioai.org/
  18. 18.
    Shaker, N., Togelius, J., Yannakakis, G.: Platformer AI Competition. URL http://platformerai.com/
  19. 19.
    Shaker, N., Togelius, J., Yannakakis, G.N.: Towards automatic personalized content generation for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE). AAAI (2010)Google Scholar
  20. 20.
    Shaker, N., Togelius, J., Yannakakis, G.N., Poovanna, L., Ethiraj, V.S., Johansson, S.J., Reynolds, R.G., Heether, L.K., Schumann, T., Gallagher, M.: The Turing test track of the 2012 Mario AI championship: Entries and evaluation. In: Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG) (2013)Google Scholar
  21. 21.
    Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B., Shimizu, T., Hashiyama, T., Sorenson, N., Pasquier, P., Mawhorter, P., Takahashi, G., Smith, G., Baumgarten, R.: The 2010 Mario AI championship: Level generation track. IEEE Transactions on Computational Intelligence and Games pp. 332–347 (2011)Google Scholar
  22. 22.
    Shaker, N., Yannakakis, G.N., Togelius, J., Nicolau, M., O’Neill, M.: Fusing visual and behavioral cues for modeling user experience in games. IEEE Transactions on Systems Man, and Cybernetics pp. 1519–1531 (2012)Google Scholar
  23. 23.
    Smith, G., Treanor, M., Whitehead, J., Mateas, M.: Rhythm-based level generation for 2D platformers. In: Proceedings of the 4th International Conference on Foundations of Digital Games, FDG 2009, pp. 175–182. ACM (2009)Google Scholar
  24. 24.
    Sorenson, N., Pasquier, P.: Towards a generic framework for automated video game level creation. In: Proceedings of the European Conference on Applications of Evolutionary Computation (EvoApplications), pp. 131–140. Springer LNCS (2010)Google Scholar
  25. 25.
    25. Sorenson, N., Pasquier, P., DiPaola, S.: A generic approach to challenge modeling for the procedural creation of video game levels. IEEE Transactions on Computational Intelligence and AI in Games (3), 229–244 (2011)Google Scholar
  26. 26.
    SuperTux Development Team: SuperTux. URL http://supertux.lethargik.org/
  27. 27.
    Wild Card: (2013). URL http://www.dwarfquestgame.com/
  28. 28.
    Wolfram, S.: Cellular Automata and Complexity: Collected Papers, vol. 1. Addison-Wesley Reading (1994)Google Scholar
  29. 29.
    Yu, D., Hull, A.: (2009). SpelunkyGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Noor Shaker
    • 1
    Email author
  • Antonios Liapis
    • 2
  • Julian Togelius
    • 3
  • Ricardo Lopes
    • 4
  • Rafael Bidarra
    • 4
  1. 1.Department of Architecture, Design and Media TechnologyAalborg University Copenhagen (AAU CPH)CopenhagenDenmark
  2. 2.Institute of Digital GamesUniversity of MaltaMsidaMalta
  3. 3.Department of Computer Science and EngineeringNew York UniversityBrooklynUSA
  4. 4.Department of Intelligent SystemsUniversity of DelftDelftThe Netherlands

Personalised recommendations