Skip to main content

Abstract

In this chapter, we describe the Phase-Amplitude Method (Ph-A) for the representation of the solution of a Schrödinger equation, in which the wave function is described in an efficient way by its amplitude y(r) and the wave phase \(\phi (r)\). Since each of these quantities vary monotonically and slowly with distance, they are much easier to calculate than the wave function itself. An iterative method to solve the non-linear equation for y is described, and the region of convergence of the iterations is examined for two scattering cases: (a) when the potential is smaller than the incident energy (in this case the wave function is oscillatory); and (b) when the potential is larger than the incident energy (this is the case of the classically forbidden region). Various applications and their accuracies are also described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Seaton, G. Peach, Proc. Phys. Soc. 79, 1296 (1962). https://doi.org/10.1088/0370-1328/79/6/127

    Article  ADS  Google Scholar 

  2. W.E. Milne, Phys. Rev. 35, 863 (1930)

    Article  ADS  Google Scholar 

  3. F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967)

    MATH  Google Scholar 

  4. H. Jeffreys, B.S. Jeffreys, Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1966)

    MATH  Google Scholar 

  5. H.A. Kramers, Z. Phys. 39, 828 (1926)

    Google Scholar 

  6. D. Budker, D. Derek, F. Kimball, D.P. DeMille, Atomic Physics: An Exploration through Problems and Solutions, 2nd edn. (Oxford University Press, Oxford, 2008)

    Google Scholar 

  7. B. Wilson, C. Iglesias, M.H. Chen, J. Quant. Spectrosc. Radiat. Transf. 81, 499 (2003)

    Google Scholar 

  8. D.J. Griffith, Introduction to Quantum Mechanics, 2nd edn. (Pearson-Prentice Hall, Upper Saddle River, 2005), p. 07458

    Google Scholar 

  9. G. Rawitscher, Comput. Phys. Commun. 191, 33 (2015)

    Google Scholar 

  10. M. Abramowitz, I. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1972)

    Google Scholar 

  11. A.B. Ritchie, A.K. Bhatia, Phys. Rev. E 69, 035402(R) (2004)

    Google Scholar 

  12. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Richardson extrapolation and the Bulirsch-Stoer method, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007). ISBN 978-0521880688

    Google Scholar 

  13. C.C. Clenshaw, A.R. Curtis, Numer. Math. 2, 197 (1960)

    Article  MathSciNet  Google Scholar 

  14. R.A. Gonzales, J. Eisert, I. Koltracht, M. Neumann, G. Rawitscher, J. Comput. Phys. 134, 134 (1997)

    Google Scholar 

  15. W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, National Institute of Standards and Technology, U.S. Department of Commerce (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  16. G. Rawitscher, I. Koltracht, Comput. Sci. Eng. 7, 58 (2005)

    Google Scholar 

  17. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover Publications, Mineola, 2001)

    MATH  Google Scholar 

  18. A. Bar-Shalom, M. Klapisch, J. Oreg, Comput. Phys. Commun. 93, 21 (1996)

    Google Scholar 

  19. G. Rawitscher, Phys. Rev. A 87, 032708 (2013)

    Google Scholar 

  20. I. Simbotin, private communication

    Google Scholar 

  21. G. Rawitscher, Comput. Phys. Commun. 203, 138 (2016)

    Google Scholar 

  22. Y. Cui et al., Phys. Rev. Lett. 119, 203402 (2017)

    Google Scholar 

  23. G. Rawitscher, C. Merrow, M. Nguyen, I. Simbotin, Am. J. Phys. 70, 935 (2002)

    Google Scholar 

  24. R.A. Gonzales, J. Eisert, I. Koltracht, M. Neumann, G. Rawitscher, J. Comput. Phys. 134, 134 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victo dos Santos Filho .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawitscher, G., dos Santos Filho, V., Peixoto, T.C. (2018). The Phase-Amplitude Representation of a Wave Function . In: An Introductory Guide to Computational Methods for the Solution of Physics Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-42703-4_8

Download citation

Publish with us

Policies and ethics