Multiscale Computational Modelling and Analysis of Cancer Invasion

Part of the Lecture Notes in Mathematics book series (LNM, volume 2167)


Recognised as a key stage in cancer growth and spread in the human body, the cancer cell invasion process is crucial for metastatic spread and the subsequent development of secondary cancers. Tissue scale proliferation and migration in conjunction with a pallet of arising cell-scale dynamics including altered adhesion and secretion of matrix degrading enzymes enable the cancer cells to actively spread locally into the surrounding tissue. This biological multiscale character that cancer invasion exhibits therefore explores the natural two-way link between the molecular processes occurring at the level of individual cells (micro-scale) and the processes occurring at the level of cell population (macro-scale). This chapter will address these multiscale biological processes from a mathematical modelling and analysis perspective, gradually paving the way towards an integrated multiscale framework that explores the tight connection between the tissues scale changes in tumour morphology and the cell-scale dynamics of proteolytic enzymes in the neighbourhood of the tumour interface.


Cancer Invasion Molecular Species Matrix Degrading Enzyme Cancer Cell Population Adhesion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Andasari, A. Gerisch, G. Lolas, A. South, M. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63 (1), 141–171 (2011). doi:10.1007/s00285-010-0369-1MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P.A. Andreasen, R. Egelund, H.H. Petersen, The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol. Life Sci. 57 (1), 25–40 (2000). doi:10.1007/s000180050497CrossRefGoogle Scholar
  3. 3.
    P.A. Andreasen, L. Kjøller, L. Christensen, M.J. Duffy, The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72 (2), 1–22 (1997). doi: 10.1002/(SICI)1097-0215(19970703)72:1<1::AID-IJC1>3.0.CO;2-Z Google Scholar
  4. 4.
    N.J. Armstrong, K.J. Painter, J.A. Sherratt, A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243 (1), 98–113 (2006). doi:10.1016/j.jtbi.2006.05.030MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Behrens, M.M. Mareel, F.M.V. Roy, W. Birchmeier, Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J. Cell Biol. 108 (6), 2435–2447 (1989). doi:10.1083/jcb.108.6.2435CrossRefGoogle Scholar
  6. 6.
    A.L. Berrier, K.M. Yamada, Cell–matrix adhesion. J. Cell Physiol. 213 (3), 565–573 (2007). doi:10.1002/jcp.21237CrossRefGoogle Scholar
  7. 7.
    N. Bhagavathula, A.W. Hanosh, K.C. Nerusu, H. Appelman, S. Chakrabarty, J. Varani, Regulation of e-cadherin and β-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function. Int. J. Cancer 121, 1455–1462 (2007). doi:10.1002/ijc.22858CrossRefGoogle Scholar
  8. 8.
    S.W. Byers, C.L. Sommers, B. Hoxter, A.M. Mercurio, A. Tozeren, Role of e-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-cell adhesion strength. J. Cell Sci. 108 (5), 2053–2064 (1995)Google Scholar
  9. 9.
    M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005). doi:10.1142/S0218202505000947MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1 (3), 399–439 (2006). doi:10.3934/nhm.2006.1.399MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S.J. Chapman, M.J. Plank, A. James, B. Basse, A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM J. 49, 151–169 (2007). doi:10.1017/S144618110001275XMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    O. Diekmann, H. Heijmans, H. Thieme, On the stability of the cell size distribution. J. Math. Biol. 19 (2), 227–248 (1984). doi:10.1007/BF00277748MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361, 41–60 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Domschke, D. Trucu, A. Gerisch, M.A.J. Chaplain, Structured models of cell migration incorporating molecular binding processes. J. Math. Biol. 1–38 (2016). ArXiv:1607.05353.Google Scholar
  15. 15.
    M.J. Duffy, The urokinase plasminogen activator system: role in malignancy. Curr. Pharm. Des. 10 (1), 39–49 (2004). doi:10.2174/1381612043453559CrossRefGoogle Scholar
  16. 16.
    P. Friedl, P.B. Noble, P.A. Walton, D.W. Laird, P.J. Chauvin, R.J. Tabah, M. Black, K.S. Zanker, Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995)Google Scholar
  17. 17.
    C.F. Gao, Q. Xie, Y.L. Su, J. Koeman, S.K. Khoo, M. Gustafson, Knudsen, B.S., R. Hay, N. Shinomiya, G.F.V. Woude, Proliferation and invasion: plasticity in tumor cells. Proc. Natl. Acad. Sci. USA 102 (30), 10528–10533 (2005). doi:10.1073/pnas.0504367102Google Scholar
  18. 18.
    A. Gerisch, M. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250 (4), 684–704 (2008). doi:10.1016/j.jtbi.2007.10.026MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Gerisch, K.J. Painter, Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion, in Cell Mechanics: From Single Scale-Based Models to Multiscale Modelling, ed. by A. Chauvière, L. Preziosi, C. Verdier (CRC, Boca Raton, FL, 2010), pp. 319–350Google Scholar
  20. 20.
    V. Guillemin, A. Pollack, Differential Topology (Prentice-Hall, Englewood Cliffs, NJ, 1974)zbMATHGoogle Scholar
  21. 21.
    P. Halmos, Measure Theory (Springer, New York, 1974)zbMATHGoogle Scholar
  22. 22.
    D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000)CrossRefGoogle Scholar
  23. 23.
    T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26 (4), 280–301 (2001). doi:10.1006/aama.2001.0721MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    C.E. Hills, M.Y.G. Younis, J. Bennett, E. Siamantouras, K.K. Liu, P.E. Squires, Calcium-sensing receptor activation increases cell-cell adhesion and β-cell function. Cell Physiol. Biochem. 30 (3), 575–586 (2012). doi:10.1159/000341439CrossRefGoogle Scholar
  25. 25.
    A.M. Hofer, S. Curci, M.A. Doble, E.M. Brown, D.I. Soybel, Intercellular communication mediated by the extracellular calcium-sensing receptor. Nat. Cell Biol. 2 (7), 392–398 (2000). doi:10.1038/35017020CrossRefGoogle Scholar
  26. 26.
    W.C. Hung, S.H. Chen, C.D. Paul, K.M. Stroka, Y.C. Lo, J.T. Yang, K. Konstantopoulos, Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202 (5), 807–824 (2013). doi:10.1083/jcb.201302132CrossRefGoogle Scholar
  27. 27.
    E. Ito, S. Ozawa, H. Kijima, A. Kazuno, T. Nishi, O. Chino, H. Shimada, M. Tanaka, S. Inoue, S. Inokuchi, H. Makuuchi, New invasive patterns as a prognostic factor for superficial esophageal cancer. J. Gastroenterol. 47, 1279–1289 (2012). doi:10.1007/s00535-012-0587-yCrossRefGoogle Scholar
  28. 28.
    R.L. Juliano, Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. 42 (1), 283–323 (2002). doi:10.1146/annurev.pharmtox.42.090401.151133CrossRefGoogle Scholar
  29. 29.
    K. Ko, P. Arora, V. Bhide, A. Chen, C. McCulloch, Cell-cell adhesion in human fibroblasts requires calcium signaling. J. Cell Sci. 114 (6), 1155–1167 (2001)Google Scholar
  30. 30.
    J. Kolega, The movement of cell clusters in vitro: Morphology and directionality. J. Cell Sci. 49, 15–32 (1981)Google Scholar
  31. 31.
    A.F.N.V. Larebeke, M.E. Bracke, M.M. Mareel, Invasive epithelial cells show more fast plasma membrane movements than related or parental non-invasive cells. Cytometry 13, 9–14 (1992). doi:10.1002/cyto.990130104CrossRefGoogle Scholar
  32. 32.
    P.U. Le, T.N. Nguyen, Drolet-P. Savoie, N. Leclerc, I.R. Nabi, Increased β-actin expression in an invasive moloney sarcoma virus-transformed MDCK cell variant concentrates to the tips of multiple pseudopodia. Cancer Res. 58 (8), 1631–1635 (1998)Google Scholar
  33. 33.
    R. Masuda, H. Kijima, N. Imamura, N. Aruga, Y. Nakamura, D. Masuda, H. Takeichi, N. Kato, T. Nakagawa, M. Tanaka, S. Inokuchi, M. Iwazaki, Tumor budding is a significant indicator of a poor prognosis in lung squamous cell carcinoma patients. Mol. Med. Rep. 6, 937–943 (2012). doi:10.3892/mmr.2012.1048Google Scholar
  34. 34.
    J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68 (Springer, Berlin, 1986)Google Scholar
  35. 35.
    C.T. Mierke, B. Frey, M. Fellner, M. Herrmann, B. Fabry, Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J. Cell Sci. 124, 369–383 (2010). doi:10.1242/jcs.071985CrossRefGoogle Scholar
  36. 36.
    K. Moissoglu, M.A. Schwartz, Integrin signalling in directed cell migration. Biol. Cell 98 (9), 547–555 (2006). doi:10.1042/BC20060025CrossRefGoogle Scholar
  37. 37.
    A.C. Newby, Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 69 (3), 614–624 (2006). doi:10.1016/j.cardiores.2005.08.002CrossRefGoogle Scholar
  38. 38.
    S.L. Parsons, S.A. Watson, P.D. Brown, H.M. Collins, R.J. Steele, Matrix metalloproteinases. Br. J. Surg. 84 (2), 160–166 (1997). doi:10.1046/j.1365-2168.1997.02719.xCrossRefGoogle Scholar
  39. 39.
    A. Pathak, S. Kumar, Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109 (26), 10334–10339 (2012). doi:10.1073/pnas.1118073109CrossRefGoogle Scholar
  40. 40.
    L. Peng, D. Trucu, P. Lin, A. Thompson, M.A.J. Chaplain, A multiscale mathematical model of tumour invasive growth (2016). arXiv:1603.07540Google Scholar
  41. 41.
    M.S. Pepper, Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscl. Throm. Vas. 21 (7), 1104–1117 (2001). doi:10.1161/hq0701.093685CrossRefGoogle Scholar
  42. 42.
    C.B. Pierce, R. Shikes, L.M. Fink, Cancer: A Problem of Developmental Biology (Prentice-Hall, Englewood Cliffs, NJ, 1978)Google Scholar
  43. 43.
    R. Poincloux, O. Collin, LizáF. rraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Contractility of the cell rear drives invasion of breast tumor cells in 3d matrigel. Proc. Natl. Acad. Sci. USA 108 (5), 1943–1948 (2011). doi:10.1073/pnas.1010396108Google Scholar
  44. 44.
    H.W. Smith, C.J. Marshall, Regulation of cell signalling by upar. Nat. Rev. Mol. Cel. Biol. 11, 23–36 (2010)CrossRefGoogle Scholar
  45. 45.
    R. Somerville, S. Oblander, S. Apte, Matrix metalloproteinases: old dogs with new tricks. Genome Biol. 4:216 (6), 11pp. (2003). doi:10.1186/gb-2003-4-6-216Google Scholar
  46. 46.
    M.D. Sternlicht, Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17 (1), 463–516 (2001). doi:10.1146/annurev.cellbio.17.1.463CrossRefGoogle Scholar
  47. 47.
    D. Trucu, P. Lin, M.A.J. Chaplain, Y. Wang, A multiscale moving boundary model arising in cancer invasion. Multiscale Model. Simul. 11 (1), 309–335 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    S.L. Tucker, S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48 (3), pp. 549–591 (1988). URL Google Scholar
  49. 49.
    S. Ulisse, E. Baldini, S. Sorrenti, D’M. Armiento, The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr. Cancer Drug Targets 9 (1), 32–71 (2009). doi:10.2174/156800909787314002Google Scholar
  50. 50.
    R. Umbas, J.A. Schalken, T.W. Aalders, e.a.: Expression of the cellular adhesion molecule e-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52, 5104–5109 (1992)Google Scholar
  51. 51.
    L. Venkatraman, S.M. Chia, B.C. Narmada, J.K. White, S.S. Bhowmick, C.F. Dewey Jr., P.T. So, L. Tucker-Kellogg, H. Yu, Plasmin triggers a switch-like decrease in thrombospondin-dependent activation of tgf-β1. Biophys. J. 103 (5), 1060–1068 (2012)CrossRefGoogle Scholar
  52. 52.
    R. Visse, H. Nagase, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure function and biochemistry. Circ. Res. 92, 827–839 (2003). doi:10.1161/01.RES.0000070112.80711.3DCrossRefGoogle Scholar
  53. 53.
    G. Webb, Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology, ed. by P. Magal, S. Ruan. Lecture Notes in Mathematics, vol. 1936 (Springer, Berlin, Heidelberg, 2008), pp. 1–49Google Scholar
  54. 54.
    R.A. Weinberg, The Biology of Cancer (Garland Science, New York, 2006)Google Scholar
  55. 55.
    K. Wolf, M. te Lindert, M. Krause, S. Alexander, J. te Riet, A.L. Willis, R.M. Hoffman, C.G. Figdor, S.J. Weiss, P. Friedl, Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201 (7), 1069–1084 (2013). doi:10.1083/jcb.201210152Google Scholar
  56. 56.
    M.H. Zaman, L.M. Trapani, A.L. Sieminski, D. MacKellar, H. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Migration of tumor cells in 3d matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103 (29), 10889–10894 (2006). doi:10.1073/pnas.0604460103CrossRefGoogle Scholar
  57. 57.
    E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001)Google Scholar
  58. 58.
    X. Zheng, S. Wise, V. Cristini, Nonlinear simulation of tumour necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull. Math. Biol. 67 (2), 211–259 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of MathematicsUniversity of DundeeDundeeUK
  2. 2.Fachbereich MathematikTechnische Universität DarmstadtDolivostrasse 15, DarmstadtGermany
  3. 3.School of Mathematics and StatisticsMathematical Institute (MI), University of St AndrewsSt AndrewsUK

Personalised recommendations