Skip to main content

Multiscale Computational Modelling and Analysis of Cancer Invasion

  • Chapter
  • First Online:
Mathematical Models and Methods for Living Systems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2167))

Abstract

Recognised as a key stage in cancer growth and spread in the human body, the cancer cell invasion process is crucial for metastatic spread and the subsequent development of secondary cancers. Tissue scale proliferation and migration in conjunction with a pallet of arising cell-scale dynamics including altered adhesion and secretion of matrix degrading enzymes enable the cancer cells to actively spread locally into the surrounding tissue. This biological multiscale character that cancer invasion exhibits therefore explores the natural two-way link between the molecular processes occurring at the level of individual cells (micro-scale) and the processes occurring at the level of cell population (macro-scale). This chapter will address these multiscale biological processes from a mathematical modelling and analysis perspective, gradually paving the way towards an integrated multiscale framework that explores the tight connection between the tissues scale changes in tumour morphology and the cell-scale dynamics of proteolytic enzymes in the neighbourhood of the tumour interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Andasari, A. Gerisch, G. Lolas, A. South, M. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63 (1), 141–171 (2011). doi:10.1007/s00285-010-0369-1

    Article  MathSciNet  MATH  Google Scholar 

  2. P.A. Andreasen, R. Egelund, H.H. Petersen, The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol. Life Sci. 57 (1), 25–40 (2000). doi:10.1007/s000180050497

    Article  Google Scholar 

  3. P.A. Andreasen, L. Kjøller, L. Christensen, M.J. Duffy, The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72 (2), 1–22 (1997). doi:10.1002/(SICI)1097-0215(19970703)72:1<1::AID-IJC1>3.0.CO;2-Z

    Google Scholar 

  4. N.J. Armstrong, K.J. Painter, J.A. Sherratt, A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243 (1), 98–113 (2006). doi:10.1016/j.jtbi.2006.05.030

    Article  MathSciNet  Google Scholar 

  5. J. Behrens, M.M. Mareel, F.M.V. Roy, W. Birchmeier, Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J. Cell Biol. 108 (6), 2435–2447 (1989). doi:10.1083/jcb.108.6.2435

    Article  Google Scholar 

  6. A.L. Berrier, K.M. Yamada, Cell–matrix adhesion. J. Cell Physiol. 213 (3), 565–573 (2007). doi:10.1002/jcp.21237

    Article  Google Scholar 

  7. N. Bhagavathula, A.W. Hanosh, K.C. Nerusu, H. Appelman, S. Chakrabarty, J. Varani, Regulation of e-cadherin and β-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function. Int. J. Cancer 121, 1455–1462 (2007). doi:10.1002/ijc.22858

    Article  Google Scholar 

  8. S.W. Byers, C.L. Sommers, B. Hoxter, A.M. Mercurio, A. Tozeren, Role of e-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-cell adhesion strength. J. Cell Sci. 108 (5), 2053–2064 (1995)

    Google Scholar 

  9. M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005). doi:10.1142/S0218202505000947

    Article  MathSciNet  MATH  Google Scholar 

  10. M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1 (3), 399–439 (2006). doi:10.3934/nhm.2006.1.399

    Article  MathSciNet  MATH  Google Scholar 

  11. S.J. Chapman, M.J. Plank, A. James, B. Basse, A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM J. 49, 151–169 (2007). doi:10.1017/S144618110001275X

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Diekmann, H. Heijmans, H. Thieme, On the stability of the cell size distribution. J. Math. Biol. 19 (2), 227–248 (1984). doi:10.1007/BF00277748

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361, 41–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Domschke, D. Trucu, A. Gerisch, M.A.J. Chaplain, Structured models of cell migration incorporating molecular binding processes. J. Math. Biol. 1–38 (2016). ArXiv:1607.05353.

    Google Scholar 

  15. M.J. Duffy, The urokinase plasminogen activator system: role in malignancy. Curr. Pharm. Des. 10 (1), 39–49 (2004). doi:10.2174/1381612043453559

    Article  Google Scholar 

  16. P. Friedl, P.B. Noble, P.A. Walton, D.W. Laird, P.J. Chauvin, R.J. Tabah, M. Black, K.S. Zanker, Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995)

    Google Scholar 

  17. C.F. Gao, Q. Xie, Y.L. Su, J. Koeman, S.K. Khoo, M. Gustafson, Knudsen, B.S., R. Hay, N. Shinomiya, G.F.V. Woude, Proliferation and invasion: plasticity in tumor cells. Proc. Natl. Acad. Sci. USA 102 (30), 10528–10533 (2005). doi:10.1073/pnas.0504367102

    Google Scholar 

  18. A. Gerisch, M. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250 (4), 684–704 (2008). doi:10.1016/j.jtbi.2007.10.026

    Article  MathSciNet  Google Scholar 

  19. A. Gerisch, K.J. Painter, Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion, in Cell Mechanics: From Single Scale-Based Models to Multiscale Modelling, ed. by A. Chauvière, L. Preziosi, C. Verdier (CRC, Boca Raton, FL, 2010), pp. 319–350

    Google Scholar 

  20. V. Guillemin, A. Pollack, Differential Topology (Prentice-Hall, Englewood Cliffs, NJ, 1974)

    MATH  Google Scholar 

  21. P. Halmos, Measure Theory (Springer, New York, 1974)

    MATH  Google Scholar 

  22. D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  23. T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26 (4), 280–301 (2001). doi:10.1006/aama.2001.0721

    Article  MathSciNet  MATH  Google Scholar 

  24. C.E. Hills, M.Y.G. Younis, J. Bennett, E. Siamantouras, K.K. Liu, P.E. Squires, Calcium-sensing receptor activation increases cell-cell adhesion and β-cell function. Cell Physiol. Biochem. 30 (3), 575–586 (2012). doi:10.1159/000341439

    Article  Google Scholar 

  25. A.M. Hofer, S. Curci, M.A. Doble, E.M. Brown, D.I. Soybel, Intercellular communication mediated by the extracellular calcium-sensing receptor. Nat. Cell Biol. 2 (7), 392–398 (2000). doi:10.1038/35017020

    Article  Google Scholar 

  26. W.C. Hung, S.H. Chen, C.D. Paul, K.M. Stroka, Y.C. Lo, J.T. Yang, K. Konstantopoulos, Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202 (5), 807–824 (2013). doi:10.1083/jcb.201302132

    Article  Google Scholar 

  27. E. Ito, S. Ozawa, H. Kijima, A. Kazuno, T. Nishi, O. Chino, H. Shimada, M. Tanaka, S. Inoue, S. Inokuchi, H. Makuuchi, New invasive patterns as a prognostic factor for superficial esophageal cancer. J. Gastroenterol. 47, 1279–1289 (2012). doi:10.1007/s00535-012-0587-y

    Article  Google Scholar 

  28. R.L. Juliano, Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. 42 (1), 283–323 (2002). doi:10.1146/annurev.pharmtox.42.090401.151133

    Article  Google Scholar 

  29. K. Ko, P. Arora, V. Bhide, A. Chen, C. McCulloch, Cell-cell adhesion in human fibroblasts requires calcium signaling. J. Cell Sci. 114 (6), 1155–1167 (2001)

    Google Scholar 

  30. J. Kolega, The movement of cell clusters in vitro: Morphology and directionality. J. Cell Sci. 49, 15–32 (1981)

    Google Scholar 

  31. A.F.N.V. Larebeke, M.E. Bracke, M.M. Mareel, Invasive epithelial cells show more fast plasma membrane movements than related or parental non-invasive cells. Cytometry 13, 9–14 (1992). doi:10.1002/cyto.990130104

    Article  Google Scholar 

  32. P.U. Le, T.N. Nguyen, Drolet-P. Savoie, N. Leclerc, I.R. Nabi, Increased β-actin expression in an invasive moloney sarcoma virus-transformed MDCK cell variant concentrates to the tips of multiple pseudopodia. Cancer Res. 58 (8), 1631–1635 (1998)

    Google Scholar 

  33. R. Masuda, H. Kijima, N. Imamura, N. Aruga, Y. Nakamura, D. Masuda, H. Takeichi, N. Kato, T. Nakagawa, M. Tanaka, S. Inokuchi, M. Iwazaki, Tumor budding is a significant indicator of a poor prognosis in lung squamous cell carcinoma patients. Mol. Med. Rep. 6, 937–943 (2012). doi:10.3892/mmr.2012.1048

    Google Scholar 

  34. J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68 (Springer, Berlin, 1986)

    Google Scholar 

  35. C.T. Mierke, B. Frey, M. Fellner, M. Herrmann, B. Fabry, Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J. Cell Sci. 124, 369–383 (2010). doi:10.1242/jcs.071985

    Article  Google Scholar 

  36. K. Moissoglu, M.A. Schwartz, Integrin signalling in directed cell migration. Biol. Cell 98 (9), 547–555 (2006). doi:10.1042/BC20060025

    Article  Google Scholar 

  37. A.C. Newby, Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 69 (3), 614–624 (2006). doi:10.1016/j.cardiores.2005.08.002

    Article  Google Scholar 

  38. S.L. Parsons, S.A. Watson, P.D. Brown, H.M. Collins, R.J. Steele, Matrix metalloproteinases. Br. J. Surg. 84 (2), 160–166 (1997). doi:10.1046/j.1365-2168.1997.02719.x

    Article  Google Scholar 

  39. A. Pathak, S. Kumar, Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109 (26), 10334–10339 (2012). doi:10.1073/pnas.1118073109

    Article  Google Scholar 

  40. L. Peng, D. Trucu, P. Lin, A. Thompson, M.A.J. Chaplain, A multiscale mathematical model of tumour invasive growth (2016). arXiv:1603.07540

    Google Scholar 

  41. M.S. Pepper, Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscl. Throm. Vas. 21 (7), 1104–1117 (2001). doi:10.1161/hq0701.093685

    Article  Google Scholar 

  42. C.B. Pierce, R. Shikes, L.M. Fink, Cancer: A Problem of Developmental Biology (Prentice-Hall, Englewood Cliffs, NJ, 1978)

    Google Scholar 

  43. R. Poincloux, O. Collin, LizáF. rraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Contractility of the cell rear drives invasion of breast tumor cells in 3d matrigel. Proc. Natl. Acad. Sci. USA 108 (5), 1943–1948 (2011). doi:10.1073/pnas.1010396108

    Google Scholar 

  44. H.W. Smith, C.J. Marshall, Regulation of cell signalling by upar. Nat. Rev. Mol. Cel. Biol. 11, 23–36 (2010)

    Article  Google Scholar 

  45. R. Somerville, S. Oblander, S. Apte, Matrix metalloproteinases: old dogs with new tricks. Genome Biol. 4:216 (6), 11pp. (2003). doi:10.1186/gb-2003-4-6-216

    Google Scholar 

  46. M.D. Sternlicht, Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17 (1), 463–516 (2001). doi:10.1146/annurev.cellbio.17.1.463

    Article  Google Scholar 

  47. D. Trucu, P. Lin, M.A.J. Chaplain, Y. Wang, A multiscale moving boundary model arising in cancer invasion. Multiscale Model. Simul. 11 (1), 309–335 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.L. Tucker, S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48 (3), pp. 549–591 (1988). URL http://www.jstor.org/stable/2101595

    Google Scholar 

  49. S. Ulisse, E. Baldini, S. Sorrenti, D’M. Armiento, The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr. Cancer Drug Targets 9 (1), 32–71 (2009). doi:10.2174/156800909787314002

    Google Scholar 

  50. R. Umbas, J.A. Schalken, T.W. Aalders, e.a.: Expression of the cellular adhesion molecule e-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52, 5104–5109 (1992)

    Google Scholar 

  51. L. Venkatraman, S.M. Chia, B.C. Narmada, J.K. White, S.S. Bhowmick, C.F. Dewey Jr., P.T. So, L. Tucker-Kellogg, H. Yu, Plasmin triggers a switch-like decrease in thrombospondin-dependent activation of tgf-β1. Biophys. J. 103 (5), 1060–1068 (2012)

    Article  Google Scholar 

  52. R. Visse, H. Nagase, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure function and biochemistry. Circ. Res. 92, 827–839 (2003). doi:10.1161/01.RES.0000070112.80711.3D

    Article  Google Scholar 

  53. G. Webb, Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology, ed. by P. Magal, S. Ruan. Lecture Notes in Mathematics, vol. 1936 (Springer, Berlin, Heidelberg, 2008), pp. 1–49

    Google Scholar 

  54. R.A. Weinberg, The Biology of Cancer (Garland Science, New York, 2006)

    Google Scholar 

  55. K. Wolf, M. te Lindert, M. Krause, S. Alexander, J. te Riet, A.L. Willis, R.M. Hoffman, C.G. Figdor, S.J. Weiss, P. Friedl, Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201 (7), 1069–1084 (2013). doi:10.1083/jcb.201210152

    Google Scholar 

  56. M.H. Zaman, L.M. Trapani, A.L. Sieminski, D. MacKellar, H. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Migration of tumor cells in 3d matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103 (29), 10889–10894 (2006). doi:10.1073/pnas.0604460103

    Article  Google Scholar 

  57. E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001)

    Google Scholar 

  58. X. Zheng, S. Wise, V. Cristini, Nonlinear simulation of tumour necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull. Math. Biol. 67 (2), 211–259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Trucu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trucu, D., Domschke, P., Gerisch, A., Chaplain, M.A.J. (2016). Multiscale Computational Modelling and Analysis of Cancer Invasion. In: Preziosi, L., Chaplain, M., Pugliese, A. (eds) Mathematical Models and Methods for Living Systems. Lecture Notes in Mathematics(), vol 2167. Springer, Cham. https://doi.org/10.1007/978-3-319-42679-2_5

Download citation

Publish with us

Policies and ethics