Skip to main content

Mathematical Modeling of Morphogenesis in Living Materials

  • Chapter
  • First Online:
  • 1706 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2167))

Abstract

From a mathematical viewpoint, the study of morphogenesis focuses on the description of all geometric and structural changes which locally orchestrate the underlying biological processes directing the formation of a macroscopic shape in living matter. In this chapter, we introduce a continuous chemo-mechanical approach of morphogenesis, deriving the balance principles and evolution laws for both volumetric and interfacial processes. The proposed theory is applied to the study of pattern formation for either a fluid-like or a solid-like biological system model, using both theoretical methods and simulation tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In mathematical terms, this latin expression can be roughly translated as the set of the strictly necessary causes (from Cicero, Rhetorica, Tusculanae Disputationes, Liber Quintus, 70).

  2. 2.

    This idea was enforced by Luca Pacioli, a student of Leonardo da Vinci, in his book De divina proportione, published in 1509.

  3. 3.

    Since S is related to \(\boldsymbol{\sigma }\) through a Piola transformation, it is often called first Piola-Kirchhoff stress tensor [85]. Nonetheless, some authors consider the latter being the transpose of S [90]. Accordingly we prefer to call it nominal stress in order to avoid misunderstanding to the readers.

  4. 4.

    We remark that for Galilean invariance they should be somehow dependent on a relative velocity field.

References

  1. H.B. Adelmann, M. Malpighi, et al., Marcello Malpighi and the Evolution Of Embryology (Cornell University Press, New York, 1966)

    Google Scholar 

  2. P. Alberch, Developmental constraints in evolutionary processes, in Evolution and Development (Springer, New York, 1982), pp. 313–332

    Google Scholar 

  3. J.O. Almen, P.H. Black, Residual Stresses and Fatigue in Metals (McGraw-Hill, New York, 1963)

    Google Scholar 

  4. D. Ambrosi, F. Mollica, On the mechanics of a growing tumor. Int. J. Eng. Sci. 40 (12), 1297–1316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Ambrosi, V. Pettinati, P. Ciarletta, Active stress as a local regulator of global size in morphogenesis. Int. J. Non-Linear Mech. 75, 5–14 (2015)

    Article  Google Scholar 

  6. D. Balme, Aristotle, in History of Animals. Books VII–X (Harvard University Press, Cambridge, 1991)

    Google Scholar 

  7. J.B. Bard, J. Bard, Morphogenesis: the Cellular and Molecular Processes of Developmental Anatomy, vol. 23 (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  8. L. Beloussov, The interplay of active forces and passive mechanical stresses in animal morphogenesis, in Biomechanics of Active Movement and Division of Cells (Springer, New York, 1994), pp. 131–180

    Book  Google Scholar 

  9. M. Ben Amar, P. Ciarletta, Swelling instability of surface-attached gels as a model of soft tissue growth under geometric constraints. J. Mech. Phys. Solids 58 (7), 935–954 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Bernard, É. Alglave, Leçons sur les propriétés des tissus vivants (Baillière, Paris, 1866)

    Google Scholar 

  11. M. Biot, Surface instability of rubber in compression. Appl. Sci. Res. Sec. A 12 (2), 168–182 (1963)

    MATH  Google Scholar 

  12. A. Boettiger, B. Ermentrout, G. Oster, The neural origins of shell structure and pattern in aquatic mollusks. Proc. Natl. Acad. Sci. 106 (16), 6837–6842 (2009)

    Article  Google Scholar 

  13. E. Buckingham, On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4 (4), 345–376 (1914)

    Article  Google Scholar 

  14. S. Budday, E. Kuhl, J.W. Hutchinson, Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. (ahead-of-print), 1–17 (2015)

    Google Scholar 

  15. D.T. Butcher, T. Alliston, V.M. Weaver, A tense situation: forcing tumour progression. Nat. Rev. Cancer 9 (2), 108–122 (2009)

    Article  Google Scholar 

  16. Z. Cai, Y. Fu, On the imperfection sensitivity of a coated elastic half-space, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 455 (The Royal Society, London, 1999), pp. 3285–3309

    Google Scholar 

  17. C. Chuong, Y. Fung, Residual stress in arteries, in Frontiers in Biomechanics (Springer, New York, 1986), pp. 117–129

    Book  Google Scholar 

  18. P. Ciarletta, Free boundary morphogenesis in living matter. Eur. Biophys. J. 41 (8), 681–686 (2012)

    Article  Google Scholar 

  19. P. Ciarletta, Wrinkle-to-fold transition in soft layers under equi-biaxial strain: a weakly nonlinear analysis. J. Mech. Phys. Solids 73, 118–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Ciarletta, M.B. Amar, Papillary networks in the dermal–epidermal junction of skin: a biomechanical model. Mech. Res. Commun. 42, 68–76 (2012)

    Article  Google Scholar 

  21. P. Ciarletta, M. Destrade, Torsion instability of soft solid cylinders. IMA J. Appl. Math. 79 (5), 804–819 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Ciarletta, Y. Fu, A semi-analytical approach to biot instability in a growing layer: strain gradient correction, weakly non-linear analysis and imperfection sensitivity. Int. J. Non-Linear Mech. 75, 38-45 (2015)

    Article  Google Scholar 

  23. P. Ciarletta, G.A. Maugin, Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling. Int. J. Non-Linear Mech. 46 (10), 1341–1346 (2011)

    Article  Google Scholar 

  24. P. Ciarletta, D. Ambrosi, G. Maugin, Configurational forces for growth and shape regulations in morphogenesis. Bull. Pol. Acad. Sci.: Tech. Sci. 60 (2), 253–257 (2012)

    Google Scholar 

  25. P. Ciarletta, D. Ambrosi, G. Maugin, Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling. J. Mech. Phys. Solids 60 (3), 432–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Ciarletta, L. Preziosi, G. Maugin, Thermo-mechanics of growth and mass transfer: morphogenesis of seashells. Comput. Methods Biomech. Biomed. Eng. 15 (sup1), 110–112 (2012)

    Google Scholar 

  27. P. Ciarletta, L. Preziosi, G. Maugin, Mechanobiology of interfacial growth. J. Mech. Phys. Solids 61 (3), 852–872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Ciarletta, V. Balbi, E. Kuhl, Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113 (24), 248101 (2014)

    Google Scholar 

  29. C. Cohen, Gould et d’arcy thompson. C.R. Palevol 3 (5), 421–431 (2004)

    Google Scholar 

  30. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13 (1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Davies, Mechanisms of Morphogenesis (Academic, Amsterdam, 2013)

    Google Scholar 

  32. M. Destrade, M. Gilchrist, D. Prikazchikov, G. Saccomandi, Surface instability of sheared soft tissues. J. Biomech. Eng. 130 (6), 061007 (2008)

    Google Scholar 

  33. M. Destrade, A.N. Annaidh, C.D. Coman, Bending instabilities of soft biological tissues. Int. J. Solids Struct. 46 (25), 4322–4330 (2009)

    Article  MATH  Google Scholar 

  34. M. Destrade, J.G. Murphy, R.W. Ogden, On deforming a sector of a circular cylindrical tube into an intact tube: existence, uniqueness, and stability. Int. J. Eng. Sci. 48 (11), 1212–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Drasdo, S. Hoehme, M. Block, On the role of physics in the growth and pattern formation of multi-cellular systems: what can we learn from individual-cell based models. J. Stat. Phys. 128 (1–2), 287–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Driever, C. Nüsslein-Volhard, The bicoid protein determines position in the drosophila embryo in a concentration-dependent manner. Cell 54 (1), 95–104 (1988)

    Article  Google Scholar 

  37. C.C. DuFort, M.J. Paszek, V.M. Weaver, Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12 (5), 308–319 (2011)

    Article  Google Scholar 

  38. G.M. Edelman, Morphoregulatory molecules. Biochemistry 27 (10), 3533–3543 (1988)

    Article  Google Scholar 

  39. M. Epstein, A. Goriely, Self-diffusion in remodeling and growth. Z. Angew. Math. Phys. 63 (2), 339–355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Epstein, G.A. Maugin, Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16 (7), 951–978 (2000)

    Article  MATH  Google Scholar 

  41. J. Flavin, Surface waves in pre-stressed mooney material. Q. J. Mech. Appl. Math. 16 (4), 441–449 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Fu, Existence and uniqueness of edge waves in a generally anisotropic elastic plate. Q. J. Mech. Appl. Math. 56 (4), 605–616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Fu, D. Brookes, Edge waves in asymmetrically laminated plates. J. Mech. Phys. Solids 54 (1), 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Fu, Z. Cai, An asymptotic analysis of the period-doubling secondary bifurcation in a film/substrate bilayer. SIAM J. Appl. Math. 75 (6), 2381–2395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Fu, P. Ciarletta, Buckling of a coated elastic half-space when the coating and substrate have similar material properties, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 471 (The Royal Society, London, 2015), pp. 20140979

    Google Scholar 

  46. Y.-C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer Science and Business Media, New York, 2013)

    Google Scholar 

  47. G. Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze (Elzeviro, 1638)

    Google Scholar 

  48. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12 (1), 30–39 (1972)

    Article  MATH  Google Scholar 

  49. C. Giverso, M. Verani, P. Ciarletta, Branching instability in expanding bacterial colonies. J. R. Soc. Interface 12 (104), 20141290 (2015)

    Google Scholar 

  50. A. Goriely, M.B. Amar, On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity. Biomech. Model. Mechanobiol. 6 (5), 289–296 (2007)

    Article  Google Scholar 

  51. S.J. Gould, Ontogeny and Phylogeny (Harvard University Press, Cambridge, 1977)

    Google Scholar 

  52. J.B. Green, J. Sharpe, Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142 (7), 1203–1211 (2015)

    Article  Google Scholar 

  53. H. Gregersen, G. Kassab, Y. Fung, Review: the zero-stress state of the gastrointestinal tract. Dig. Dis. Sci. 45 (12), 2271–2281 (2000)

    Article  Google Scholar 

  54. E. Guyon, J.-P. Hulin, L. Petit, P.G. de Gennes, Hydrodynamique Physique (EDP Sciences Les Ulis, France, 2001)

    Google Scholar 

  55. E.H. Haeckel, Generelle Morphologie der Organismen allgemeine Grundzuge der organischen Formen-Wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte Descendenz-Theorie von Ernst Haeckel: Allgemeine Entwickelungsgeschichte der Organismen kritische Grundzuge der mechanischen Wissenschaft von den entstehenden Formen der Organismen, begrundet durch die Descendenz-Theorie, vol. 2 (Verlag von Georg Reimer, Berlin, 1866)

    Google Scholar 

  56. V. Hamburger, Wilhelm roux: visionary with a blind spot. J. Hist. Biol. 30 (2), 229–238 (1997)

    Article  Google Scholar 

  57. H. Han, Y. Fung, Residual strains in porcine and canine trachea. J. Biomech. 24 (5), 307–315 (1991)

    Article  Google Scholar 

  58. M.P. Harris, S. Williamson, J.F. Fallon, H. Meinhardt, R.O. Prum, Molecular evidence for an activator–inhibitor mechanism in development of embryonic feather branching. Proc. Natl. Acad. Sci. U. S. A. 102 (33), 1734–11739 (2005)

    Article  Google Scholar 

  59. N. Hartsoeker, Conjectures Physiques, vol. 2 (H. Desbordes, Amsterdam, 1708)

    Google Scholar 

  60. W. Harvey, R. Willis, The Works of William Harvey, vol. 11 (Sydenham Society, London, 1847)

    Google Scholar 

  61. B.D. Hoffman, C. Grashoff, M.A. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction. Nature 475 (7356), 316–323 (2011)

    Article  Google Scholar 

  62. A. Hoger, On the residual stress possible in an elastic body with material symmetry. Arch. Ration. Mech. Anal. 88 (3), 271–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Hoger, On the determination of residual stress in an elastic body. J. Elast. 16 (3), 303–324 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Hoger, Residual stress in an elastic body: a theory for small strains and arbitrary rotations. J. Elast. 31 (1), 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Hoger, The elasticity tensor of a transversely isotropic hyperelastic material with residual stress. J. Elast. 42 (2), 115–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Howard, S.W. Grill, J.S. Bois, Turing’s next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12 (6), 392–398 (2011)

    Article  Google Scholar 

  67. J.S. Huxley, Problems of Relative Growth (Methuen, London, 1932)

    Google Scholar 

  68. J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, K.N. Kozlov, E. Myasnikova, C.E. Vanario-Alonso, M. Samsonova, D.H. Sharp, et al. Dynamic control of positional information in the early drosophila embryo. Nature 430 (6997), 368–371 (2004)

    Article  Google Scholar 

  69. J. Jaeger, D. Irons, N. Monk, Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development 135 (19), 3175–3183 (2008)

    Article  Google Scholar 

  70. B.E. Johnson, A. Hoger, The dependence of the elasticity tensor on residual stress. J. Elast. 33 (2), 145–165 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. E.F. Keller, L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30 (2), 225–234 (1971)

    Article  MATH  Google Scholar 

  72. S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376 (6543), 765–768 (1995)

    Article  Google Scholar 

  73. S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329 (5999), 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. E. Kröner, Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4 (1), 273–334 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Kücken, A.C. Newell, Fingerprint formation. J. Theor. Biol. 235 (1), 71–83 (2005)

    Article  MathSciNet  Google Scholar 

  76. T. Lecuit, P.-F. Lenne, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8 (8), 633–644 (2007)

    Article  Google Scholar 

  77. T. Lecuit, P.-F. Lenne, E. Munro, Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27, 157–184 (2011)

    Article  Google Scholar 

  78. E.H. Lee, Elastic-plastic deformation at finite strains. J. Appl. Mech. 36 (1), 1–6 (1969)

    Article  MATH  Google Scholar 

  79. H. Levine, S. Pamuk, B. Sleeman, M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol. 63 (5), 801–863 (2001)

    Article  MATH  Google Scholar 

  80. J. Liu, K. Bertoldi, Bloch wave approach for the analysis of sequential bifurcations in bilayer structures, in Proceedings of the Royal Society A, vol. 471 (The Royal Society, London, 2015), pp. 20150493

    Google Scholar 

  81. P.K. Maini, D.S. McElwain, D.I. Leavesley, Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng. 10 (3–4), 475–482 (2004)

    Article  Google Scholar 

  82. G.A. Maugin, Material Inhomogeneities in Elasticity, vol. 3 (CRC Press, Boca Raton, 1993)

    Book  MATH  Google Scholar 

  83. G.A. Maugin, Eshelby stress in elastoplasticity and ductile fracture. Int. J. Plast. 10 (4), 393–408 (1994)

    Article  MATH  Google Scholar 

  84. G. Maugin, On inhomogeneity, growth, ageing and the dynamics of materials. J. Mech. Mater. Struct. 4 (4), 731–741 (2009)

    Article  Google Scholar 

  85. G.A. Maugin, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics (CRC Press, Boca Raton, 2010)

    Book  MATH  Google Scholar 

  86. G. Maugin, C. Trimarco, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech. 94 (1–2), 1–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  87. G. Mendel, Versuche über pflanzenhybriden, in Verhandlungen des naturforschenden Vereines in Brunn 4: 3, vol. 44 (1866)

    Google Scholar 

  88. W.W. Mullins, R. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35 (2), 444–451 (1964)

    Article  Google Scholar 

  89. C.D. Murray, The physiological principle of minimum work: I. the vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U. S. A. 12 (3), 207 (1926)

    Google Scholar 

  90. R.W. Ogden, Non-linear Elastic Deformations (Courier Corporation, New York, 1997)

    Google Scholar 

  91. A. Papastavrou, P. Steinmann, E. Kuhl, On the mechanics of continua with boundary energies and growing surfaces. J. Mech. Phys. Solids 61 (6), 1446–1463 (2013)

    Article  MathSciNet  Google Scholar 

  92. S. Pivar, On the Origin of Form: Evolution by Self-Organization (North Atlantic Books, Berkeley, 2009)

    Google Scholar 

  93. M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan, Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. 104 (41), 15988–15993 (2007)

    Article  Google Scholar 

  94. P. Prusinkiewicz, D.R. Fowler, H. Meinhardt, The Algorithmic Beauty of Sea Shells (Springer Science and Business Media, New York, 2009)

    Google Scholar 

  95. A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D.K. Fygenson, B.I. Shraiman, Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. 109 (3), 739–744 (2012)

    Article  Google Scholar 

  96. J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, F. Jülicher, Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. 107 (49), 20863–20868 (2010)

    Article  Google Scholar 

  97. E.K. Rodriguez, A. Hoger, A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27 (4), 455–467 (1994)

    Article  Google Scholar 

  98. A. Romano, Thermomechanics of Phase Transitions in Classical Field Theory, vol. 13 (World Scientific, Singapore, 1993)

    MATH  Google Scholar 

  99. W. Roux, Beiträge zur entwickelungsmechanik des embryo. Arch. Pathol. Anat. Physiol. klin. Med. 114 (2), 246–291 (1888)

    Article  Google Scholar 

  100. P.G. Saffman, G. Taylor, The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 245 (The Royal Society, London, 1958), pp. 312–329

    Google Scholar 

  101. A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: how the gut gets its villi. Science 342 (6155), 212–218 (2013)

    Article  Google Scholar 

  102. R. Skalak, Growth as a finite displacement field, in Proceedings of the IUTAM Symposium on Finite Elasticity (Springer, Dordrecht, 1982), pp. 347–355

    Google Scholar 

  103. R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer, H. Vilmann, Analytical description of growth. J. Theor. Biol. 94 (3), 555–577 (1982)

    Article  MathSciNet  Google Scholar 

  104. R. Skalak, S. Zargaryan, R.K. Jain, P.A. Netti, A. Hoger, Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34 (8), 889–914 (1996)

    Article  MATH  Google Scholar 

  105. R.S. Smith, S. Guyomarc’h, T. Mandel, D. Reinhardt, C. Kuhlemeier, P. Prusinkiewicz, A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. U. S. A. 103 (5), 1301–1306 (2006)

    Article  Google Scholar 

  106. H. Spemann, H. Mangold, Über induktion von embryonalanlagen durch implantation artfremder organisatoren. Dev. Genes Evol. 100 (3), 599–638 (1924)

    Google Scholar 

  107. M. Stähle, C. Veit, U. Bachfischer, K. Schierling, B. Skripczynski, A. Hall, P. Gierschik, K. Giehl, Mechanisms in lpa-induced tumor cell migration: critical role of phosphorylated erk. J. cell Sci. 116 (18), 3835–3846 (2003)

    Article  Google Scholar 

  108. A. Stathopoulos, D. Iber, Studies of morphogens: keep calm and carry on. Development 140 (20), 4119–4124 (2013)

    Article  Google Scholar 

  109. A. Stroh, Steady state problems in anisotropic elasticity. J. Math. Phys. 41 (2), 77–103 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  110. L.A. Taber, Biomechanics of growth, remodeling, and morphogenesis. Evolution 490, 6 (1995)

    Google Scholar 

  111. D.W. Thompson, On Growth and Form (Cambridge University Press, Cambridge, 1917)

    Book  Google Scholar 

  112. T.C. Ting, C. Horgan, Anisotropic elasticity: theory and applications. J. Appl. Mech. 63, 1056 (1996)

    Article  Google Scholar 

  113. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237 (641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  114. C. Verdier, J. Etienne, A. Duperray, L. Preziosi, Review: rheological properties of biological materials. C. R. Phys. 10 (8), 790–811 (2009)

    Article  Google Scholar 

  115. R.L.K. Virchow, Cellular Pathology (John Churchill, London, 1860)

    Google Scholar 

  116. C.H. Waddington, Canalization of development and the inheritance of acquired characters. Nature 150 (3811), 563–565 (1942)

    Article  Google Scholar 

  117. J. Wolff, Das gesetz der transformation der knochen. DMW-Dtsch. Med. Wochenschr. 19 (47), 1222–1224 (1892)

    Article  Google Scholar 

  118. L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25 (1), 1–47 (1969)

    Article  Google Scholar 

  119. L. Wolpert, Positional information and patterning revisited. J. Theor. Biol. 269 (1), 359–365 (2011)

    Article  Google Scholar 

  120. L. Wolpert, C. Tickle, A.M. Arias, Principles of Development (Oxford University Press, Oxford, 2015)

    Google Scholar 

  121. M.A. Wozniak, C.S. Chen, Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10 (1), 34–43 (2009)

    Article  Google Scholar 

  122. S.R. Yu, M. Burkhardt, M. Nowak, J. Ries, Z. Petrášek, S. Scholpp, P. Schwille, M. Brand, Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461 (7263), 533–536 (2009)

    Article  Google Scholar 

  123. E.A. Zamir, L.A. Taber, Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126 (6), 823–830 (2004)

    Article  Google Scholar 

  124. A.J. Zhu, M.P. Scott, Incredible journey: how do developmental signals travel through tissue? Genes Dev. 18 (24), 2985–2997 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Chiara Giverso for performing the numerical simulations shown in Fig. 4.8, and to Ellen Kuhl for sharing the numerical FE code used in Sect. 4.6.2.4. Partial funding by the European Community grant ERG-256605, FP7 program, and by the “Start-up Packages and PhD Program” project, co-funded by Regione Lombardia through the “Fondo per lo sviluppo e la coesione 2007-2013”, formerly FAS program, is gratefully acknowledged by the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Ciarletta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balbi, V., Ciarletta, P. (2016). Mathematical Modeling of Morphogenesis in Living Materials. In: Preziosi, L., Chaplain, M., Pugliese, A. (eds) Mathematical Models and Methods for Living Systems. Lecture Notes in Mathematics(), vol 2167. Springer, Cham. https://doi.org/10.1007/978-3-319-42679-2_4

Download citation

Publish with us

Policies and ethics