Mathematical Models of the Interaction of Cells and Cell Aggregates with the Extracellular Matrix

Part of the Lecture Notes in Mathematics book series (LNM, volume 2167)


It is nowadays understood that the interactions cells have with the fibrous environment they live in determine their behaviour. In fact, for instance, they play a fundamental role in cell motion, in tumour invasion and metastatization, in stem cell differentiation, and in tissue development.

In this chapter, we will describe several models that deal with different aspects characterizing these interactions. In particular, from the tutorial point of view, the topic will be used as a playground to briefly present several modelling frameworks, e.g., age-structured models, individual cell-based models, continuum mechanics, and mixture theory.

The models presented will be usually characterised by multiscale aspects because, for instance, the physical parameters determining cell motion and duplication are affected by the expression of proteins inside the cell and of receptors at its membrane. In turn, the behaviour of cellular aggregates and of tissues depends on the behaviour of single cells. For this reason, some upscaling tool will also be described.


Interaction Force Traction Force Mass Balance Equation Monte Carlo Step Force Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Balter, R.M.H. Merks, N.J. Poplawski, M. Swat, J.A. Glazier, The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study, in Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, ed. by A.R.A. Anderson, M.A.J. Chaplain, K.A. Rejniak (Birkaüser, Basel, 2007), pp. 151–167CrossRefGoogle Scholar
  2. 2.
    W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, D. Drenckhahn, Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A. 97, 4005–4010 (2000)CrossRefGoogle Scholar
  3. 3.
    C. Beadle, M.C. Assanah, P. Monzo, R. Vallee, S.S. Rosenfeld, P. Canoll, The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell. 19, 3357–3368 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Beil, A. Micoulet, G. Wichert, S. Paschke, P. Walther, M.B. Omary, P.P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, T. Seufferlei, Sphingosylphosphorylcholine regulates keratin network architecture and viscoelastic properties of human cancer cells. Nat. Cell Biol. 5, 803–811 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Boucher, L. Baxter, R.K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990)Google Scholar
  6. 6.
    Y. Boucher, H. Salehil, B. Witwerl, G.R. Harsh, R.K. Jain, Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer 75, 829–836 (1997)CrossRefGoogle Scholar
  7. 7.
    R.M. Bowen, Theory of mixtures, in Continuum Physics, vol. 3, ed. by A.C. Eringen (Academic, New York, 1976)Google Scholar
  8. 8.
    B.T. Burgess, J.L. Myles, R.B. Dickinson, Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen. Ann. Biomed. Eng. 28, 110–118 (2003)CrossRefGoogle Scholar
  9. 9.
    D.T. Butcher, T. Alliston, V. Weaver, A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009)CrossRefGoogle Scholar
  10. 10.
    S.B. Carter, Haptotaxis and the mechanism of cell motility. Nature 213, 256–260 (1967)CrossRefGoogle Scholar
  11. 11.
    M. Chaplain, L. Graziano, L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23, 197–229 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    S.R. Chary, R.K. Jain, Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. U. S. A. 86, 5385–5389 (1989)CrossRefGoogle Scholar
  13. 13.
    P.A. DiMilla, J.A. Stone, J.A. Quinn, S.M. Albelda, D.A. Lauffenburger, Maximal migration of human smooth-muscle cells on fibronectin and type-IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993)CrossRefGoogle Scholar
  14. 14.
    A.D. Doyle, F.W. Wang, K. Matsumoto, K.M. Yamada, One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009)CrossRefGoogle Scholar
  15. 15.
    K. Franzé, The mechanical control of nervous system development. Development 140, 3069–3077 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Friedl, E.B. Brocker, The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57, 41–64 (2000)CrossRefGoogle Scholar
  17. 17.
    P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003)CrossRefGoogle Scholar
  18. 18.
    P. Friedl, K. Maaser, C.E. Klein, B. Niggemann, G. Krohne, K.S. Zänker, Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res. 57, 2061–2070 (1997)Google Scholar
  19. 19.
    C. Giverso, L. Preziosi, Modelling the compression and reorganization of cell aggregates. Math. Med. Biol. 29, 181–204 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    C. Giverso, L. Preziosi, Behaviour of cell aggregates under force-controlled compression. Int. J. Nonlinear Mech. 56, 50–55 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Giverso, A. Grillo, L. Preziosi, Influence of nuclear deformability on cell entry into cylindrical structures. Biomech. Model. Mechanobiol. 13, 481–502 (2014)CrossRefGoogle Scholar
  22. 22.
    J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)CrossRefGoogle Scholar
  23. 23.
    F. Graner, J.A. Glazier, Simulation of biological cell sorting using a two dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2017 (1992)CrossRefGoogle Scholar
  24. 24.
    J. Guck, F. Lautenschläger, S. Paschke, M. Beil, Critical review: cellular mechanobiology and amoeboid migration. Integr. Biol. 2, 575–583 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Guilak, D.M. Cohen, B.T. Estes, J.M. Gimble, W. Liedtke, C.S. Chen, Control of stem cell fate by physical interactions the extracellular matrix. Stem Cell 5, 17–26 (2009)Google Scholar
  26. 26.
    B.A.C. Harley, H. Kim, M.H. Zaman, I.V. Yannas, D.A. Lauffenburger, L.J. Gibson, Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys. J. 95, 4013–4024 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Hohme, D. Drasdo, Biomechanical and nutrient controls in the growth of mammalian cell populations. Math. Popul. Stud. 17, 166–187 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S. Huang, C.P. Brangwynne, K.K. Parker, D.E. Ingber, Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence. Cell Motil. Cytoskeleton 61, 201–213 (2005)CrossRefGoogle Scholar
  29. 29.
    O. Ilina, G.J. Bakker, A. Vasaturo, R.M. Hofmann, P. Friedl, Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys Biol. 8, 015010 (2011). Erratum in: Phys Biol. 8, 029501 (2011)Google Scholar
  30. 30.
    D. Ingber, Mechanobiology and diseases of mechanotransduction. Ann. Med. 35, 1–14 (2009)Google Scholar
  31. 31.
    E. Ising, Beitrag zur theorie des ferromagnetismus. Z. Physik 31, 253–258 (1925)CrossRefGoogle Scholar
  32. 32.
    R.K. Jain, Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987)Google Scholar
  33. 33.
    D.L. Jones, A.J. Wagers, No place like home: anatomy and function of the stem cell niche. Nat. Rev. 9, 11–22 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Kass, M. Erler, M. Dembo, V. Weaver, Mammary epithelial cell: influence of ECM composition and organization during development and tumorigenesis. Int. J. Biochem. Cell. Biol. 39, 1987–1994 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Knapinska, G.B. Fields, Chemical biology for understanding matrix metalloproteinase function. Chembiochem. 13, 2002–2020 (2012)CrossRefGoogle Scholar
  36. 36.
    T.P. Kole, Y. Tseng, I. Jiang, J.L. Katz, D. Wirtz, Intracellular mechanics of migrating broblasts. Mol. Biol. Cell. 16, 328–338 (2005)CrossRefGoogle Scholar
  37. 37.
    T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, T. Hall, Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20, 260–274 (1998)CrossRefGoogle Scholar
  38. 38.
    R.M. Kuntz, W.M. Saltzman, Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys. J. 72, 1472–1480 (1997)CrossRefGoogle Scholar
  39. 39.
    T. Lämmermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Förster, D.R. Critchley, R. Fässler, M. Sixt, Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)CrossRefGoogle Scholar
  40. 40.
    F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, J. Guck, The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. U. S. A. 106, 15696–15701 (2009)CrossRefGoogle Scholar
  41. 41.
    O. Lindvall, Z. Kokaia, Progress stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006)CrossRefGoogle Scholar
  42. 42.
    O. Lindvall, Z. Kokaia, Stem cells in human neurodegenerative disorders: time for clinical translation? J. Clin. Invest. 120, 29–40 (2010)CrossRefGoogle Scholar
  43. 43.
    C.M. Lo, H.B. Wang, M. Dembo, Y.L. Wang, Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)CrossRefGoogle Scholar
  44. 44.
    M.P. Lutolf, J.L. Lauer-Fields, H.G. Schmoekel, A.T. Metters, F.E. Weber, G.B. Fields, J.A. Hubbell, Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. U. S. A. 100, 5413–5418 (2003)CrossRefGoogle Scholar
  45. 45.
    K. Maaser, K. Wolf, C.E. Klein, B. Niggemann, K.S. Zänker, E.B. Bröcker, P. Friedl, Functional hierarchy of simultaneously expressed adhesion receptors: integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol. Biol. Cell. 10, 3067–3079 (1999)CrossRefGoogle Scholar
  46. 46.
    R.M.H. Merks, J.A. Glazier, S.V. Brodsky, M.S. Goligorksy, S.A. Newman, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodelling. Develop. Biol. 289, 44–54 (2006)CrossRefGoogle Scholar
  47. 47.
    R.M.H. Merks, E.D. Perryn, A. Shirinifard, J.A. Glazier, Contact-inhibited chemotactic motility: role in de novo and sprouting blood vessel growth. PLoS Comput. Biol. 4, e1000163 (2008)CrossRefGoogle Scholar
  48. 48.
    N. Metropolis, A.E. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  49. 49.
    V. Milišic, D. Oelz, On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction. SIAM J. Math. Anal. 47 (3), 2104–2121 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    I. Müller, A thermodynamic theory of mixture of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    D. Ölz, C. Schmeiser, V. Small, Modelling of the actin-cytoskeleton in symmetric lamellipodial fragments. Cell Adh. Migr. 2, 117–126 (2008)CrossRefGoogle Scholar
  52. 52.
    S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997)CrossRefGoogle Scholar
  53. 53.
    E.D. Perryn, A. Czirok, C.D. Little, Vascular sprout formation entails tissue deformations and VE-cadherin dependent cell-autonomous motility. Dev. Biol. 313, 545–555 (2008)CrossRefGoogle Scholar
  54. 54.
    R.B. Potts, Some generalized order-disorder transformations. Proc. Camb. Philos. Soc. 48, 106–109 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    L. Preziosi, A. Farina, On Darcy’s law for growing porous media. Int. J. Nonlinear Mech. 37, 485–491 (2001)CrossRefzbMATHGoogle Scholar
  56. 56.
    L. Preziosi, A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58, 625–656 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    L. Preziosi, G. Vitale, A multiphase model of tumour and tissue growth including cell adhesion and plastic re-organisation. Math. Models Methods Appl. Sci. 21, 1901–1932 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    L. Preziosi, D. Ambrosi, C. Verdier, An elasto-visco-plastic model of cell aggregates. J. Theor. Biol. 262, 35–47 (2010)MathSciNetCrossRefGoogle Scholar
  59. 59.
    E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)CrossRefGoogle Scholar
  60. 60.
    K.R. Rajagopal, L. Tao, Mechanics of Mixtures (World Scientific, Singapore, 1995)CrossRefzbMATHGoogle Scholar
  61. 61.
    C.G. Rolli, T. Seufferlein, R. Kemkemer, J.P. Spatz, Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach. PLoS ONE 5, e8726 (2010)CrossRefGoogle Scholar
  62. 62.
    M. Scianna, L. Preziosi. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels. J. Theor. Biol. 317, 394–406 (2013)CrossRefGoogle Scholar
  63. 63.
    M. Scianna, L. Preziosi, A cellular Potts model for the MMP-dependent and -independent cancer cell migration in matrix microtracks of different dimensions. Comput. Mech. 53, 485–497 (2014)CrossRefzbMATHGoogle Scholar
  64. 64.
    M. Scianna, R.M.H. Merks, L. Preziosi, E. Medico, Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J. Theor. Biol. 260, 151–160 (2009)CrossRefGoogle Scholar
  65. 65.
    M. Scianna, L. Preziosi, K. Wolf, A cellular Potts model simulating cell migration on and in matrix environments. Math. Biosci. Eng. 10, 235–261 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    S.A. Siefert, R. Sarkar, Matrix metalloproteinases in vascular physiology and disease. Vasc. Res. 20, 210–216 (2012)Google Scholar
  67. 67.
    M.S. Steinberg, Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963)Google Scholar
  68. 68.
    M.S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173, 395–433 (1970)Google Scholar
  69. 69.
    M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005)CrossRefGoogle Scholar
  70. 70.
    Y. Sun, C.S. Chen, J. Fu, Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Ann. Rev. Biophys. 41, 519–542 (2012)CrossRefGoogle Scholar
  71. 71.
    M. Sun, J. Graham, B. Hegedus, F. Marga, Y. Zhang, G. Forgacs, M. Grandbois, Multiple membrane tethers probed by atomic force microscopy. Byophys. J. 89, 4320–4329 (2005)CrossRefGoogle Scholar
  72. 72.
    A. Szabo, A. Czirok, The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model. Nat. Phenom. 5, 106–122 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    A. Szabo, E.D. Perryn, A. Czirok, Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98, 038102 (2007)CrossRefGoogle Scholar
  74. 74.
    A. Szabo, E. Mehes, E. Kosa, A. Czirok, Multicellular sprouting in vitro. Biophys. J. 95, 2702–2710 (2008)Google Scholar
  75. 75.
    A. Szabo, R. Unnep, E. Mehes, W. Twal, S. Argraves, Y. Cho, A. Czirok, Collective cell motion in endothelial monolayers. Phys. Biol. 7, 046007 (2011)CrossRefGoogle Scholar
  76. 76.
    A. Szabo, K. Varga, T. Garay, B. Hegedus, A. Czirok, Invasion from a cell aggregate: the roles of active cell motion and mechanical equilibrium. Phys. Biol. 9, 016010 (2012)CrossRefGoogle Scholar
  77. 77.
    P.A. Torzilli, J.W. Bourne, T. Cigler, C.T. Vincent, A new paradigm for mechanobiological mechanisms in tumor metastasis. Semin. Cancer Biol. 22, 385–395 (2012)CrossRefGoogle Scholar
  78. 78.
    I. Tufto, J. Lyng, E.K. Rofstad, Interstitial fluid pressure, perfusion rate and oxygen tension in human melanoma xenografts. Br. J. Cancer Suppl. 27, S252–S255 (1996)Google Scholar
  79. 79.
    T.A. Ulrich, E.M. De Juan Pardo, S. Kumar, The mechanical rigidity of the extracellular matrix regulates th structure, motility, and proliferation of glioma cells. Cancer Res. 69, 4167–4174 (2009)CrossRefGoogle Scholar
  80. 80.
    M. Versaevel, T. Grevesse, S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012)CrossRefGoogle Scholar
  81. 81.
    P.S. Wellman, R.D. Howe, E. Dalton, K.A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis. Technical Report. Harvard BioRobotics Laboratory, 1–15 (1999)Google Scholar
  82. 82.
    K. Wolf, P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell. Biol. 21, 736–744 (2011)CrossRefGoogle Scholar
  83. 83.
    K. Wolf, I. Mazo, H. Leung, K. Engelke, U.H. von Andrian, E.I. Deryugina, A.Y. Strongin, E.B. Brocker, P. Friedl, Compensation mechanism in tumor cell migration mesenchymalamoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003)CrossRefGoogle Scholar
  84. 84.
    K. Wolf, Y.I. Wu, Y. Liu, J. Geiger, E. Tam, Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell. Biol. 9, 893–904 (2007)CrossRefGoogle Scholar
  85. 85.
    K. Wolf, M. te Lindert, M. Krause, S. Alexander, J. te Riet, A.L. Willis, R.M. Hoffman, C.G. Figdor, S.J. Weiss, P. Friedl, Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013)CrossRefGoogle Scholar
  86. 86.
    M.H. Zaman, L.M. Trapani, A.L. Sieminski, D. Mackellar, H. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U. S. A. 103, 10889–10894 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze MatematichePolitecnico di TorinoTorinoItaly

Personalised recommendations