Skip to main content

Integrated Stochastic and Deterministic Sensitivity Analysis: Correlating Variability of Design Parameters with Cell and Stack Performance

  • Chapter
  • First Online:
Reduced Modelling of Planar Fuel Cells

Abstract

Integrating stochastic and deterministic measures, this chapter carries out sensitivity analysis to correlate the variability of design parameters (including geometrical parameters, material properties, and physical parameters) with single-cell and stack performances in Sects. 6.2 and 6.3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin X, Xue X (2010) Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions. J Power Sources 195(19):6652–6658

    Article  Google Scholar 

  2. Arpino F, Carotenuto A, Massarotti N, Nithiarasu P (2008) A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems. Int J Numer Meth Heat Fluid Flow 18(7–8):811–834

    Article  Google Scholar 

  3. Shi Y, Cai N, Li C, Bao C, Croiset E, Qian J, Hu Q, Wang S (2007) Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiple layers SOFC cell. Part I. Experiments, model development and validation. J Power Sources 172(1):235–245

    Article  Google Scholar 

  4. Shi Y, Cai N, Li C, Bao C, Croiset E, Qian J, Hu Q, Wang S (2007) Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ| LSM-ScSZ multiple layers SOFC cell. Part II. Simulations and discussion. J Power Sources 172(1):246–252

    Article  Google Scholar 

  5. Hussain MM, Li X, Dincer I (2006) Mathematical modeling of planar solid oxide fuel cells. J Power Sources 161(2):1012–1022

    Article  Google Scholar 

  6. Nam JH, Jeon DH (2006) A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochim Acta 51(17):3446–3460

    Article  Google Scholar 

  7. Zhu H, Kee RJ (2003) A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. J Power Sources 117(1–2):61–74

    Article  Google Scholar 

  8. Kim J, Virkar AV, Fung K, Mehta K, Singhal SC (1999) Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J Electrochem Soc 146(1):69–78

    Article  Google Scholar 

  9. Andersson M, Paradis H, Yuan J, Sundén B (2013) Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation. Electrochim Acta 2013(109):881–893

    Article  Google Scholar 

  10. Andersson M, Yuan J, Sundén B (2014) SOFC cell design optimization using the finite element method based CFD approach. Fuel Cells 2:177–188

    Article  Google Scholar 

  11. Serincan MF, Pasaogullari U, Sammes NM (2008) Computational thermal-fluid analysis of a microtubular solid oxide fuel cell. J Electrochem Soc 155(11):B1117–B1127

    Article  Google Scholar 

  12. EG&G Technical Services, I., (2004) Fuel cell handbook. U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory: Morgantown, West Virginia

    Google Scholar 

  13. Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141(1):79–95

    Article  Google Scholar 

  14. Bird RB, Stewart WE, Lightfoot EN (2007) Transport Phenomena. 2nd ed, New York: John Wiley & Sons, Inc. 526–537, 794, 866

    Google Scholar 

  15. Sunden B, Faghri M (2005) Transport phenomena in fuel cells. WIT Press

    Google Scholar 

  16. Chaisantikulwat A, Diaz-Goano C, Meadows ES (2008) Dynamic modelling and control of planar anode-supported solid oxide fuel cell. Comput Chem Eng 32(10):2365–2381

    Article  Google Scholar 

  17. Costamagna P, Honegger K (1998) Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization. J Electrochem Soc 145(11):3995–4007

    Article  Google Scholar 

  18. O’Hayre R, Cha S-W, Colella W, Prinz FB (2006) Fuel Cell Fundamentals, 1st edn. John Wiley & Sons, Hoboken, N.J

    Google Scholar 

  19. Cengel YA, Ghajar AJ (2009) Heat and Mass Transfer Fundamentals and Applications. 4th ed. McGraw-Hill, New York, pp 884–886

    Google Scholar 

  20. Krantz WB (2007) Scaling analysis in modeling transport and reaction processes: a systematic approach to model building and the art of approximation. AIChE

    Google Scholar 

  21. Ni M (2010) 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell. Energy Convers Manag 51(4):714–721

    Article  Google Scholar 

  22. Huang CM, Shy SS, Chien CW, Lee CH (2010) Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties. J Power Sources 195(8):2260–2265

    Article  Google Scholar 

  23. Hussain MM, Li X, Dincer I (2009) A numerical investigation of modeling an SOFC electrode as two finite layers. Int J Hydrogen Energy 34(7):3134–3144

    Article  Google Scholar 

  24. Ni M, Leung DYC, Leung MKH (2009) Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. Energy Convers Manag 50(2):268–278

    Article  Google Scholar 

  25. Ni M, Leung MKH, Leung DYC (2007) Parametric study of solid oxide fuel cell performance. Energy Convers Manag 48(5):1525–1535

    Article  Google Scholar 

  26. Chan SH, Khor KA, Xia ZT (2001) A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J Power Sources 93(1–2):130–140

    Article  Google Scholar 

  27. O’Connor, P.D.T. and Kleyner, A., Practical reliability engineering. 2012, Hoboken, NJ: Wiley

    Google Scholar 

  28. Mustafa YA (2006) Determining the optimal sample size in the Monte Carlo experiments. Selçuk J Appl Math 7(2):103–108

    MathSciNet  MATH  Google Scholar 

  29. NIST/SEMATECH e-Handbook of Statistical Methods. (2012) NIST/SEMATECH

    Google Scholar 

  30. Witte RS (1992) Statistics. 4th ed. Harcourt Brace Jovanovich, Orlando, Florida

    Google Scholar 

  31. He Z, Li H, Birgersson E (2014) Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack. Appl Energy 136:560–575

    Article  Google Scholar 

  32. Tuffery S (2011) Data mining and statistics for decision making (2011) Hoboken. Wiley, NJ

    Google Scholar 

  33. Bove R, Ubertini S (2008) Modeling solid oxide fuel cells [electronic resource]: methods, procedures and techniques. Springer Science + Business Media B.V, Dordrecht

    Google Scholar 

  34. Hussain MM (2008) Multi-Component and multi-dimensional mathematical modeling of solid oxide fuel cells. University of Waterloo, Waterloo, Ontario, Canada

    Google Scholar 

  35. Antony J (2003) Design of Experiments for Engineers and Scientists. Butterworth-Heinemann: Elsevier Science & Technology Books, Oxford; Burlinton, MA, p 152

    Google Scholar 

  36. Faes A, Feurbringer J-M, Mohamedi D, Hessler-Wyser A, Caboche G, Herle JV (2011) Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part I: microstructure optimization. J Power Sources 2011(196):7058–7069

    Article  Google Scholar 

  37. COMSOL Multiphysics Matlab Interface Guide (2008) [cited 2014 November 14]; COMSOL 3.5a. http://math.nju.edu.cn/help/mathhpc/doc/comsol/mlinterface.pdf

  38. Tseronis K, Bonis I, Kookos IK, Theodoropoulos C (2012) Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. Int J Hydrog Energy 37(1):530–547

    Article  Google Scholar 

  39. Carraro T, Joos J, Ruger B, Weber A, Ivers-Tiffee E (2012) 3D finite element model for reconstructed mixed-conducting cathodes: I Performance quantification. Electrochim Acta 77:315–323

    Article  Google Scholar 

  40. Carraro T, Joos J, Ruger B, Weber A, Ivers-Tiffee E (2012) 3D finite element model for reconstructed mixed-conducting cathodes: II Parameter sensitivity analysis. Electrochimica Acta 77:309–314

    Article  Google Scholar 

  41. Costamagna P, Costa P, Antonucci V (1998) Micro-modelling of solid oxide fuel cell electrodes. Electrochim Acta 43(3–4):375–394

    Article  Google Scholar 

  42. Hussain MM, Li X, Dincer I (2005) Multi-component mathematical model of solid oxide fuel cell anode. Int J Energy Res 29(12):1083–1101

    Article  Google Scholar 

  43. Chan SH, Xia ZT (2001) Anode micro model of solid oxide fuel cell. J Electrochem Soc 148(4):A388–A394

    Article  Google Scholar 

  44. Wang G, Yang Y, Zhang H, Xia W (2007) 3-D model of thermo-fluid and electrochemical for planar SOFC. J Power Sources 167(2):398–405

    Article  Google Scholar 

  45. He Z, Birgersson E, Li H (2014) Spatially smoothed fuel cell models: variability of dependent variables underneath flow fields. Int J Hydrog Energy 2014(39):4566–4575

    Article  Google Scholar 

  46. Vural Y, Ma L, Ingham DB, Pourkashanian M (2010) Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes. J Power Sources 195(15):4893–4904

    Article  Google Scholar 

  47. Church BC (2004) Fabrication and characterization of solid oxide feul cell interconnect alloys, in material science and engineering. Georgia Institute of Technology, Atlanta

    Google Scholar 

  48. Jang B (2010) Fabrication and testing of micro PEM fuel cells using glass wafer, in space exporation engineering program. Korea Institute of Advanced Study, Daejeon

    Google Scholar 

  49. Fergus JW, Hui R, Li X, Wilkinson DP, Zhang J (2009) Solid oxide fuel cells: materials properties and performance. CRC Press, Boca Raton, FL

    Google Scholar 

  50. Marr MA (2013) Fabrication of metal-supported solid oxide fuel cell electrolytes by liquid-feed plasma spraying, in graduate department of mechanical and industrial engineering. University of Toronto, Toronto

    Google Scholar 

  51. COMSOL Multiphysics Modeling Guide (2008) [cited 2014 May 21]; COMSOL 3.5a. https://is.muni.cz/el/1431/podzim2013/F7061/um/guide.pdf

  52. COMSOL Multiphysics User’s Guide (2008) [cited 2014 February]; COMSOL 3.5a. http://math.nju.edu.cn/help/mathhpc/doc/comsol/guide.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjie He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, Z., Li, H., Birgersson, K.E. (2017). Integrated Stochastic and Deterministic Sensitivity Analysis: Correlating Variability of Design Parameters with Cell and Stack Performance. In: Reduced Modelling of Planar Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-42646-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42646-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42645-7

  • Online ISBN: 978-3-319-42646-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics