Skip to main content

Full Three-Dimensional Modelling of PEMFC and Planar SOFC

  • Chapter
  • First Online:
Reduced Modelling of Planar Fuel Cells

Abstract

This chapter presents the full sets of equations for two typical kinds of planar fuel cells, including the three-dimensional (3D) two-phase proton exchange membrane fuel cell (PEMFC) and 3D planar solid oxide fuel cell (P-SOFC), in Sects. 3.2 and 3.3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel NP, Ellis MW, Nelson DJ, von Spakovsky MR (2004) A two-dimensional computational model of a PEMFC with liquid water transport. J Power Sources 128(2):173–184

    Article  Google Scholar 

  2. Birgersson E, Noponen M, Vynnycky M (2005) Analysis of a two-phase non-isothermal model for a PEFC. J Electrochem Soc 152(5):A1021–A1034

    Article  Google Scholar 

  3. Sunden B, Faghri M (2005) Transport phenomena in fuel cells. WIT Press

    Google Scholar 

  4. Zamel N (2007) Transfer of mass and heat in polymer electrolyte membrane fuel cell cathode. In: Mechanical Engineering. University of Waterloo, Ontario, Canada

    Google Scholar 

  5. Spiegel C (2008) PEM fuel cell modeling and simulation using Matlab. Elsevier, Amsterdam, Boston

    Google Scholar 

  6. Neild DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York, pp 14–15

    Google Scholar 

  7. Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel-cell model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  8. Jaouen F, Lindbergh G, Sundholm G (2002) Investigation of mass-transport limitations in the solid polymer fuel cell cathode I. Mathematical model. J Electrochem Soc 149(4):A437–A447

    Article  Google Scholar 

  9. Suna Wei, Peppley Brant A, Karan K (2005) An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochim Acta 50(16–17):3359–3374

    Article  Google Scholar 

  10. Secanell M, Karan K, Suleman A, Djilali N (2007) Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochim Acta 52(22):6318–6337

    Article  Google Scholar 

  11. Pharoah JG, Karan K, Sun W (2006) On effective transport coefficients in PEM fuel cell electrodes: anisotropy of the porous transport layers. J Power Sources 161(1):214–224

    Article  Google Scholar 

  12. Harvey D, Pharoah JG, Karan K (2008) A comparison of different approaches to modelling the PEMFC catalyst layer. J Power Sources 179(1):209–219

    Article  Google Scholar 

  13. Schwarz DH, Djilali N (2007) 3D modeling of catalyst layers in PEM fuel cells. J Electrochem Soc 154(11):B1167–B1178

    Article  Google Scholar 

  14. Rao RM, Bhattacharyya D, Rengaswamy R, Choudhury SR (2007) A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode. J Power Sources 173(1):375–393

    Article  Google Scholar 

  15. Lin G, He W, Nguyen TV (2004) Modeling liquid water effects in gas diffusion and catalyst layers of a PEM fuel cell electrode. J Electrochem Soc 151:A1999–A2006

    Article  Google Scholar 

  16. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley

    Google Scholar 

  17. O’Hayre R, Cha S-W, Colella W, Prinz FB (2006) Fuel cell fundamentals, 1st edn. John Wiley & Sons, Hoboken, N.J

    Google Scholar 

  18. EG&G Technical Services I (2004) Fuel cell handbook. 2004, U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia

    Google Scholar 

  19. Rock NL (2009) Synthesis and characterization of novel electrocatalysts and supports for use in polymer electrolyte membrane fuel cells, in Department of Materials Science and Engineering. 2009, Carnegie Mellon University, Pittsburgh. p 20–22

    Google Scholar 

  20. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester, West Sussex, p 15

    Google Scholar 

  21. Serincan MF, Pasaogullari U, Sammes NM (2008) Computational thermal-fluid analysis of a microtubular solid oxide fuel cell. J Electrochem Soc 155(11):B1117–B1127

    Article  Google Scholar 

  22. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester, West Sussex, p 15

    Google Scholar 

  23. Hussain MM, Li X, Dincer I (2006) Mathematical modeling of planar solid oxide fuel cells. J Power Sources 161(2):1012–1022

    Article  Google Scholar 

  24. Andersson M, Yuan J, Sundén B (2010) Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl Energy 87(5):1461–1476

    Article  Google Scholar 

  25. Haberman BA, Young JB (2004) Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int J Heat Mass Transf 47(17–18):3617–3629

    Article  MATH  Google Scholar 

  26. Yuan J, Huang Y, Sundén B, Wang WG (2009) Analysis of parameter effects on chemical reaction coupled transport phenomena in SOFC anodes. Heat Mass Transf 45(4):471–484

    Article  Google Scholar 

  27. Pramuanjaroenkij A, Kakaç S, Yang Zhou X (2008) Mathematical analysis of planar solid oxide fuel cells. Int J Hydrogen Energy 33(10):2547–2565

    Article  Google Scholar 

  28. VanderSteen JDJ, Kenney B, Pharoah JG, Karan K (2004) Mathematical modelling of the transport phenomena and the chemical/electrical reactions in solid oxide fuel cells: a review. In: Canadian hydrogen and fuel cells conference

    Google Scholar 

  29. Damm DL, Fedorov AG (2006) Reduced-order transient thermal modeling for SOFC heating and cooling. J Power Sources 159(2):956–967

    Article  Google Scholar 

  30. Chaisantikulwat A, Diaz-Goano C, Meadows ES (2008) Dynamic modelling and control of planar anode-supported solid oxide fuel cell. Comput Chem Eng 32(10):2365–2381

    Article  Google Scholar 

  31. Damm DL, Fedorov AG (2006) Local thermal non-equilibrium effects in porous electrodes of the hydrogen-fueled SOFC. J Power Sources 159(2):1153–1157

    Article  Google Scholar 

  32. Kavinay M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New York

    Book  Google Scholar 

  33. Zheng K, Sun Q, Ni M (2013) Local non-equilibrium thermal effects in solid oxide fuel cells with various fuels. Energ Technol 1(1):35–41

    Article  Google Scholar 

  34. Sharma AK, Birgersson K, Vynnycky M, Ly H (2013) On the interchangeability of potentiostatic and galvanostatic boundary conditions for fuel cells. Electrochim Acta 2013(109):617–622

    Article  Google Scholar 

  35. COMSOL Multiphysics User’s Guide (2008) [cited 2014 February]; COMSOL 3.5a. http://math.nju.edu.cn/help/mathhpc/doc/comsol/guide.pdf

  36. COMSOL Multiphysics Reference Guide (2008) [cited 2014 February]; COMSOL 3.5a: http://math.nju.edu.cn/help/mathhpc/doc/comsol/command.pdf

  37. Jin X, Xue X (2010) Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions. J Power Sources 195(19):6652–6658

    Article  Google Scholar 

  38. Tseronis K, Bonis I, Kookos IK, Theodoropoulos C (2012) Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. Int J Hydrogen Energy 37(1):530–547

    Article  Google Scholar 

  39. Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141(1):79–95

    Article  Google Scholar 

  40. Mukherjee YX, Mukherjee S (1997) On boundary conditions in the element-free Galerkin method. Comput Mech 19(4):264–270

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi Y, Cai N, Li C, Bao C, Croiset E, Qian J, Hu Q, Wang S (2007) Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiple layers SOFC cell. Part I. Experiments, model development and validation. J Power Sources 172(1):235–245

    Article  Google Scholar 

  42. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. John Wiley, New York

    Book  Google Scholar 

  43. Shi Y, Cai N, Li C, Bao C, Croiset E, Qian J, Hu Q, Wang S (2007) Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion. J Power Sources 164(2):639–648

    Article  Google Scholar 

  44. Yakabe H, Hishinuma M, Uratani M, Matsuzaki Y, Yasuda I (2000) Evaluation and modeling of performance of anode-supported solid oxide fuel cell. J Power Sources 86(1):423–431

    Article  Google Scholar 

  45. Costamagna P, Honegger K (1998) Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization. J Electrochem Soc 145(11):3995–4007

    Article  Google Scholar 

  46. Serincan MF, Pasaogullari U, Sammes NM (2008) Computational thermal-fluid analysis of a microtubular solid oxide fuel cell. J Electrochem Soc 155(11):B1117–B1127

    Article  Google Scholar 

  47. Ju HC, Wang CY, Cleghorn S, Beuscher U (2005) Nonisothermal modeling of polymer electrolyte fuel cells I. Experimental validation. J Electrochem Soc 152(8):A1645–A1653

    Article  Google Scholar 

  48. Ferguson JR, Fiard JM, Herbin R (1996) Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J Power Sources 58(2):109–122

    Article  Google Scholar 

  49. Bove R, Ubertini S (2008) Modeling solid oxide fuel cells [electronic resource]: methods, procedures and techniques. Springer Science + Business Media B.V, Dordrecht

    Google Scholar 

  50. Chan SH, Xia ZT (2001) Anode micro model of solid oxide fuel cell. J Electrochem Soc 148(4):A388–A394

    Article  Google Scholar 

  51. Costamagna P, Costa P, Antonucci V (1998) Micro-modelling of solid oxide fuel cell electrodes. Electrochim Acta 43(3–4):375–394

    Article  Google Scholar 

  52. Hussain MM, Li X, Dincer I (2005) Multi-component mathematical model of solid oxide fuel cell anode. Int J Energy Res 29(12):1083–1101

    Article  Google Scholar 

  53. Wang G, Yang Y, Zhang H, Xia W (2007) 3-D model of thermo-fluid and electrochemical for planar SOFC. J Power Sources 167(2):398–405

    Article  Google Scholar 

  54. Todd B, Young JB (2002) Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. J Power Sources 110(1):186–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjie He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, Z., Li, H., Birgersson, K.E. (2017). Full Three-Dimensional Modelling of PEMFC and Planar SOFC. In: Reduced Modelling of Planar Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-42646-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42646-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42645-7

  • Online ISBN: 978-3-319-42646-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics