Skip to main content

Agricultural Fires in European Russia, Belarus, and Lithuania and Their Impact on Air Quality, 2002–2012

  • Chapter
  • First Online:
Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991

Abstract

This chapter describes the first research to quantify air pollution emissions at a moderate to coarse scale from agricultural burning in Belarus, Lithuania, and European Russia using MODIS and Landsat-based estimates of fire, land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fires occurring from March to June and a smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout the region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands, pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times larger than the 1 km MODIS active fire estimates. Using the annual MODIS and Landsat-based burned area estimations, we identified 25 carbon, particulate matter , volatile organic carbon (VOCs) , and harmful air pollutants (HAPs) emissions for all agricultural burning, including both croplands and pastures. In general, European Russia is the main source of agricultural burning emissions. Lithuania and Belarus have relatively minor contributions. Indeed, emissions from certain agricultural burning air pollutants in European Russia are so large that they are equivalent to 5 % of emissions from all sectors (industry, energy, transportation, all sources of fire) in Lithuania and likely in other neighboring Eastern European countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072

    Article  Google Scholar 

  • Alcantara CT et al (2013) Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ Res Lett 8

    Google Scholar 

  • Alcantara C, Kuemmerle T, Prishchepov AV, Radeloff VC (2012) Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens Environ 124:334–347

    Article  Google Scholar 

  • Badarinth KVS, Chand TRK, Prasad VK (2006) Agriculture crop residue burning in the Indo-Gangetic Plains—a study using IRS-P6 AWiFS satellite data. Curr Sci India 91:1085–1089

    Google Scholar 

  • Bellona and Yabloko (2010) Conclusion of the public commission about investigations of the causes and consequences of nature fires in Russia in 2010. url:http://www.yabloko.ru/mneniya_i_publikatsii/2010/09/14. Accessed 13 July 2015

  • BELSTAT (2011) Regions of Belarus republic, 2002–2010, Statistical Compendium Volume 1 (Regioni Respubliki Belarus. Statisticheskii Sbornik). Minsk: BELSTAT

    Google Scholar 

  • Bescansa P, Imaz MJ, Virto I, Enrique A, Hooqmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Till Res 87:19–27

    Article  Google Scholar 

  • Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552

    Article  Google Scholar 

  • Bowman DMJS et al (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236

    Article  Google Scholar 

  • Briggs JM, Knapp AK, Brock BL (2002) Expansion of woody plants in tallgrass prairie: a fifteen-year study of fire and fire-grazing interactions. Am Midl Nat 147:287–294

    Article  Google Scholar 

  • Brye KR, Longer DE, Gbur EE (2006) Impact of tillage and residue burning on carbon dioxide flux in a wheat-soybean production system. Soil Sci 70:1145–1154

    Article  Google Scholar 

  • Chen Y, Tessier S, Cavers C, Xu X, Monero E (2005) A survey of crop residue burning practices in Manitoba. Appl Eng Agric 21:317–323

    Article  Google Scholar 

  • Derevyagin VA (1987) Practical guidance on straw utilization as fertilizer. All-Union Research and Development, USSR State Agro-Industrial Committee on design and technological institute for organic fertilizers and peat, Moscow, Russia, pp 1–11. http://quickr.mtri.org/croplandburning

  • Dhammapala R, Claiborn C, Corkill J, Gullett B (2006) Particulate emissions from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho. Atmos Environ 40:1007–1015

    Article  Google Scholar 

  • Dubinin M, Potapov P, Lushchekina A, Radeloff VC (2011) Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens Environ 114:1638–1648

    Article  Google Scholar 

  • EEA (2014) Air pollution country fact sheets (2014): Lithuania. url:http://www.eea.europa.eu/themes/air/air-pollution-country-fact-sheets-2014. Accessed 2 May 2015

  • Evseev A (2013) Spring grass burning is troubling Russia. url:http://english.pravda.ru/russia/kremlin/11-04-2013/124256-grass_fires-0/. Accessed 2 May 2015

  • FAO (2000) The Forest Resource Programme 2000. url:http://www.fao.org/forestry/4031-0b6287f13b0c2adb3352c5ded18e491fd.pdf. Accessed 2 May 2015

  • FAOSTAT (2012) Arable land area. url:http://faostat3.fao.org/download/R/RL/E. Accessed 13 May 2015

  • Friedl M (2013) User guide for the MODIS land cover type product (MCD12Q1). url:lpdaac.usgs.gov/sites/default/files/public/modis/docs/MCD12Q1_UserGuide_07302013.pdf. Accessed 26 Feb 2015

  • Fritz S et al (2015) Mapping global cropland and field size. Glob Change Biol 21:1980–1992

    Article  Google Scholar 

  • Genikhovich E, Polischuk A, Pershina N (2009) Air pollution in eastern Europe. Regional aspects of climate-terrestrial-hydrologic interactions. In: Grosima PY, Ivanov SV (eds) Non-boreal eastern Europe. NATO Science for Peace and Security Series C: Environmental Security 2009, Spring Science+Business Media, New York

    Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman Y (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282. doi:10.1016/S0034-4257(03)00184-6

    Article  Google Scholar 

  • Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974. doi:10.5194/acp-6-957-2006

    Article  Google Scholar 

  • Goldammer JG (2013) White paper on use of prescribed fire in land management, natura conservation and forestry in temperate-boreal Eurasia. In: Goldammer JG (ed) Prescribed burning in Russia and neighbouring temperate-boreal Eurasia. Global Fire Monitoring Center (GFMC) and Kessel Publishing House, Remagen-Oberwinter, Germany

    Google Scholar 

  • Hall J, Loboda T, McCarty G (2015) Mapping and monitoring cropland burning in Russia: a multi-sensor approach. Poster presented at the NASA Carbon Cycle and Ecosystems workshop, College Park, MD 20–24 Apr. url:http://cce.nasa.gov/cgi-bin/meeting_2015/mtg2015_ab_search.pl?action=3&ab_id=86&search_pres_type=Poster&limit_last=100&search_free_text=Hall%20Loboda&limit_first=1&asc=1&desc=0&order_by=

  • Hawbaker TJ, Radeloff VC, Syphard AD, Zhu Z, Stewart SI (2008) Detection rates of the MODIS active fire product in the United States. Remote Sens Environ 112:2656–2664

    Article  Google Scholar 

  • International Institute for Applied Systems Analysis (IIASA) (2015) Finding farmland: new maps offer a clearer view of global agriculture. url:www.iiasa.ac.at/web/home/about/news/150116-Cropland-Maps.html. Accessed 26 Feb 2015

  • Kakareka SV, Kukharchyk TI (2003) PAH emission from the open burning of agricultural debris. Sci Total Environ 308:257–261

    Article  Google Scholar 

  • Kobets EM, Romanenkov V, Rukhovitch D (2010) Agricultural burning and forest fires in Russia. Presented on Sept 2010. url:https://www.eionet.europa.eu/events/Arctic%20Council/Elena%20Kobets

  • Kobets E, Blokova E, Tsepilova O (2011) The impact of agricultural burning on atmospheric air pollution and arctic climate. url:http://bellona.ru/filearchive/fil_otcheteng.pdf

  • Krylov A, McCarty JL, Potapov P, Loboda T, Tyukavina A, Turubanova S, Hansen MC (2014a) Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ Res Lett 9:105007–105014

    Article  Google Scholar 

  • Krylov A, McCarty JL, Potapov P, Turubanova S, Prishchepov A, Manisha A, Romanenkov V, Rukhovitch D, Koroleva P, Hansen MC (2014b) Fire regime and land abandonment in European Russia: case study of Smolensk Oblast. Abstract GC33E-0576 presented at the 2014 Fall Meeting, American Geophysical Union (AGU), San Francisco, CA 15–19 Dec 2014

    Google Scholar 

  • Kuemmerle T, Kaplan JO, Prishchepov AV, Rylsky I, Chaskovskyy O, Tikunov VS, Müller D (2015) Forest transitions in eastern Europe and their effects on carbon budgets. Glob Change Biol. doi:10.1111/gcb.12897

    Google Scholar 

  • Lerman Z, Shagaida N (2007) Land policies and agricultural land markets in Russia. Land Use Policy 24:14–23

    Article  Google Scholar 

  • Lerman Z, Csaki C, Feder G (2004) Agriculture in transition: land policies and evolving farm structures in post-soviet countries. Lexington Books, Lanham, Boulder, New York, Toronto, Oxford

    Google Scholar 

  • LITHSTAT (2014) Lithuanian statistics online dataset. url:http://www.stat.gov.lt/en/home. Accessed 13 July 2015

  • Loboda T, Krankina O, Savin I, Kurbanov E, Hall J (2017) Land management and impact of 2010 extreme drought event on agricultural and ecological systems of European Russia. In Radeloff V, Gutman G (eds) Land-cover and land-use changes in Eastern Europe after the Collapse of the Soviet Union in 1991. Springer (this volume)

    Google Scholar 

  • Magi BI, Rabin S, Shevliakova E, Pacala S (2012) Separating agricultural and non-agricultural fire seasonality at regional scales. Biogeosciences 9:3003–3012

    Article  Google Scholar 

  • Mazzola M, Johnson TE, Cook RJ (1997) Influence of field burning and soil treatments on growth of wheat after Kentucky bluegrass, and effect of Rhizoctonia cerealis on bluegrass emergence and growth. Plant Pathol 46:708–715

    Article  Google Scholar 

  • McCarty JL (2011) Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. JAPCA J Air Waste Manag Assoc 61:22–34

    Article  Google Scholar 

  • McCarty JL, Justice CO, Korontzi S (2007) Agricultural burning in the southeastern United States detected by MODIS. Remote Sens Environ 108:151–162

    Article  Google Scholar 

  • McCarty JL, Ellicott EA, Romanenkov V, Rukhovitch D, Koroleva P (2012) Multi-year black carbon emissions from cropland burning in the Russian Federation. Atmos Environ 63:223–238. doi:10.1016/j.atmosenv.2012.08.053

    Article  Google Scholar 

  • Mierauskas P (2012) Policy and legislative framework overview of fire management in Lithuanian protected areas. Flamma 3:1–5

    Google Scholar 

  • Narayan C, Fernades PM, van Brusselen J, Schuck A (2007) Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol. For Ecol Manage 251:164–173

    Article  Google Scholar 

  • Ortiz de Zarate I, Ezcurra A, Lacaux JP, Van Dinh P, Diaz de Argandona J (2005) Pollution by cereal waste burning in Spain. Atmos Res 73:161–170

    Article  Google Scholar 

  • Potapov P, Turubanova S, Zhuravleva I, Hansen M, Yaroshenko A, Manisha A (2012) Forest cover change within the Russian European North after the Breakdown of Soviet Union (1990–2005). Int J For Res

    Google Scholar 

  • Potapov PV, Turubanova SA, Tyukavina A, Krylov AM, McCarty JL, Radeloff VC, Hansen MC (2014) Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens Environ 159:28–43

    Article  Google Scholar 

  • Prishchepov AV, Radeloff VC, Baumann M, Kuemmerle T, Müller D (2012) Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-soviet eastern Europe. Environ Res Lett 7:024021

    Article  Google Scholar 

  • Prishchepov AV, Muller D, Dubinin M, Baumann M, Radeloff VC (2013) Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30:873–884

    Article  Google Scholar 

  • Republic of Belarus (2015) Agriculture in Belarus. http://www.belarus.by/en/invest/key-sectors-for-investment/agriculture. Accessed 2 Apl 2015

  • Romanenkov V, Rukhovitch D, Koroleva P, McCarty JL (2014) Estimating black carbon emissions from agricultural burning. In: Mueller L, Lischeid G, Saparov A (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of central Asia. Springer, New York, pp 347–364

    Chapter  Google Scholar 

  • ROSSTAT (2010) Regions of Russia. url:www.gks.ru. Accessed 12 July 2015

  • ROSSTAT (2012) Socio-economic data for Russian Region. url:www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/publications/catalog/doc_1138623506156. Accessed 13 May 2015

  • ROSSTAT (2014) Russian Federation Federal State Statistics Service. url:www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/en/main/. Accessed 13 July 2015

  • Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112:3690–3707. doi:10.1016/j.rse.2008.05.013

    Article  Google Scholar 

  • Saarikoski S, Hillamo R (2013) Wildfires as a source of aerosol particles transported to the northern European regions. In: Viana M (ed) Urban air quality in Europe. Springer, Heidelberg, pp 101–121

    Google Scholar 

  • Sakovich VS (2008) Agriculture in Belarus between 1980–2007: tendency of the development (Selskoe Hozjaistvo v Respublike Belarus v 1980–2007 g.: tendencii razvitija). Minsk: Belorusskaja nauka

    Google Scholar 

  • Schierhorn F, Muller D, Beringer T, Prishchepov AV, Kuemmerle T, Balmann A (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus. Glob Biochem Cycles 27:1175–1185

    Article  Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning. Clim Change 2:207–247

    Article  Google Scholar 

  • Soja AJ, Cofer WR, Shugart HH, Sukhinin AI, Stackhouse PW Jr, McRae DJ, Conard SG (2004) Estimating fire emissions and disparities in boreal Siberia (1998–2002). J Geophys Res 109:D14S06. doi:10.1029/2004JD004570

  • Stohl A, Berg T, Burkhart JF, Fjǽraa AM, Forster C, Herber A, Hov Ø, Lunder C, McMillan WW, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Ström J, Tørseth K, Treffeisen R, Virkkunen K, Yttri KE (2007) Arctic smoke—record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos Chem Phys 7:511–534. doi:10.5194/acp-7-511-2007

    Article  Google Scholar 

  • Streets DG, Gupta S, Waldhoff ST, Wang MQ, Bond TC, Yiyun B (2001) Black carbon emissions in China. Atmos Environ 35:4281–4296

    Article  Google Scholar 

  • Targino AC, Krecl P, Johansson C, Swietlicko E, Massling A, Coraiola GC, Lihavainen H (2013) Deterioration of air quality across Sweden due to transboundary agricultural burning emissions. Boreal Environ Res 18:19–36

    Google Scholar 

  • Tulbure M, Wimberly MC, Roy DP, Henebry GM (2010) Spatial and temporal heterogeneity of agricultural fires in the central United States in relation to land cover and land use. Landsc Ecol 26:211–224

    Article  Google Scholar 

  • UNDP (2014) 2894 Belarus—catalyzing sustainability of the wetland protected area system in Belarusian Polesie through increased management efficiency and realigned land use practices. http://www.undp.org/content/undp/en/home/ourwork/environmentandenergy/focus_areas/ecosystems_and_biodiversity/projects/belarus_-_catalyzingsustainabilityofthewetlandprotectedareasyste.html

  • US EPA (2015) The 2011 national emissions inventory, Version 2. url:http://www.epa.gov/ttnchie1/net/2011inventory.html

  • USDA FAS (2013) Favorable crop prospects in Poland and Lithuania. http://www.pecad.fas.usda.gov/highlights/2013/07/PolandLithuania/. Accessed 2 Apr 2015

  • USDA FAS (2014) Grain and feed September 2014 update: Russian Federation. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20September%202014%20Update_Moscow_Russian%20Federation_8-29-2014.pdf. Accessed 2 Apr 2015

  • Van Leeuwen TT, Van der Werf GR, Hoffmann AA, Detmers RG, Rücker G, French NHF, Archibald S, Carvalho JA, Jr, Cook GD, De Groot WJ, Hély C, Kasischke ES, Kloster S, McCarty JL, Pettinari ML, Savadogo P, Alvarado EC, Boschetti L, Manuri S, Meyer CP, Siegert F, Trollope LA, Trollope WSW (2014) Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11:7305–7329

    Google Scholar 

  • Venkataraman C, Habib G, Kadamba D, Shrivastava M, Leon J-F, Crouzille B, Boucher O, Streets DG (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution moderate resolution imaging spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem, Cy. 20

    Google Scholar 

  • WHO (2000) World Health Organization: air quality guidelines for Europe, 2nd edn. WHO Regional Publication, European Series, No. 91. url:http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf. Accessed 2 Apr 2015

  • Witham C, Manning A (2007) Impacts of Russian biomass burning on UK air quality. Atmos Environ 41:8075–8090

    Article  Google Scholar 

  • Yang S, He H, Lu S, Chen D, Zhu J (2008) Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmos Environ 42:1961–1969

    Article  Google Scholar 

  • Yevich R, Logan JA (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Glob Biogeochem Cycles 17:1095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. McCarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McCarty, J.L. et al. (2017). Agricultural Fires in European Russia, Belarus, and Lithuania and Their Impact on Air Quality, 2002–2012. In: Gutman, G., Radeloff, V. (eds) Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991. Springer, Cham. https://doi.org/10.1007/978-3-319-42638-9_9

Download citation

Publish with us

Policies and ethics