A Parameterized Algorithm for Bounded-Degree Vertex Deletion

  • Mingyu XiaoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)


The d-bounded-degree vertex deletion problem, to delete at most k vertices in a given graph to make the maximum degree of the remaining graph at most d, finds applications in computational biology, social network analysis and some others. It can be regarded as a special case of the \((d+2)\)-hitting set problem and generates the famous vertex cover problem. The d-bounded-degree vertex deletion problem is NP-hard for each fixed \(d\ge 0\). In terms of parameterized complexity, the problem parameterized by k is W[2]-hard for unbounded d and fixed-parameter tractable for each fixed \(d\ge 0\). Previously, (randomized) parameterized algorithms for this problem with running time bound \(O^*((d+1)^k)\) are only known for \(d\le 2\). In this paper, we give a uniform parameterized algorithm deterministically solving this problem in \(O^*((d+1)^k)\) time for each \(d\ge 3\). Note that it is an open problem whether the \(d'\)-hitting set problem can be solved in \(O^*((d'-1)^k)\) time for \(d'\ge 3\). Our result answers this challenging open problem affirmatively for a special case. Furthermore, our algorithm also gets a running time bound of \(O^*(3.0645^k)\) for the case that \(d=2\), improving the previous deterministic bound of \(O^*(3.24^k)\).


Parameterized algorithms Graph algorithms Bounded-degree vertex deletion Hitting set 


  1. 1.
    Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Appl. Math. 160(1–2), 53–60 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411, 3736–3756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A linear kernel for co-path/cycle packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 90–102. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77, 1141–1158 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Feng, Q., Wang, J., Li, S., Chen, J.: Randomized parameterized algorithms for \(P_2\)-packing and co-path packing problems. J. Comb. Optim. 29(1), 125–140 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-hitting Set. Algorithmica 57, 97–118 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fernau, H.: Parameterized algorithms for d-hitting set: the weighted case. Theor. Comput. Sci. 411(16–18), 1698–1713 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fernau, H.: Parameterized algorithmics for d-hitting set. Int. J. Comput. Math. 87(14), 3157–3174 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Katrenič, J.: A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett. 116(4), 273–278 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Newnan, I., Sohler, C.: Every proerty of hyperfinite graphs is testable. SIAM J. Comput. 42(3), 1095–1112 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. J. Discrete Algorithms 1, 89–102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Soc. 6, 139–154 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tu, J.: A fixed-parameter algorithm for the vertex cover P3 problem. Inf. Process. Lett. 115, 96–99 (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wu, B.Y.: A measure and conquer approach for the parameterized bounded degree-one vertex deletion. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 469–480. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Xiao, M.: On a generalization of Nemhauser and Trotter’s local optimization theorem. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 442–452. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48971-0_38 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations