An Improved Approximation Algorithm for rSPR Distance

  • Zhi-Zhong ChenEmail author
  • Eita Machida
  • Lusheng Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)


The problem of computing the rSPR distance of two given trees has many applications but is unfortunately NP-hard. The previously best approximation algorithm for rSPR distance achieves a ratio of 2.5 and it was open whether a better approximation algorithm for rSPR distance exists. In this paper, we answer this question in the affirmative by presenting an approximation algorithm for rSPR distance that achieves a ratio of \(\frac{7}{3}\). Our algorithm is based on the new notion of key and several new structural lemmas.


  1. 1.
    Baroni, M., Grunewald, S., Moulton, V., Semple, C.: Bounding the number of hybridisation events for a consistent evolutionary history. J. Math. Biol. 51, 171–182 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evol. Biol. 6, 159–169 (2006)CrossRefGoogle Scholar
  3. 3.
    Bonet, M.L., John, K.S., Mahindru, R., Amenta, N.: Approximating subtree distances between phylogenies. J. Comput. Biol. 13, 1419–1434 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bordewich, M., McCartin, C., Semple, C.: A 3-approximation algorithm for the subtree distance between phylogenies. J. Discrete Algorithms 6, 458–471 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Ann. Comb. 8, 409–423 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Z.-Z., Wang, L.: FastHN: a fast tool for minimum hybridization networks. BMC Bioinformatics 13, 155 (2012)CrossRefGoogle Scholar
  7. 7.
    Chen, Z.-Z., Fan, Y., Wang, L.: Faster exact computation of rSPR distance. J. Comb. Optim. 29(3), 605–635 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Shi, F., Feng, Q., You, J., Wang, J.: Improved approximation algorithm for maximum agreement forest of two rooted binary phylogenetic trees. J. Comb. Optim (to appear). doi: 10.1007/s10878-015-9921-7 Google Scholar
  9. 9.
    Hein, J., Jing, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Appl. Math. 71, 153–169 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ma, B., Wang, L., Zhang, L.: Fitting distances by tree metrics with increment error. J. Comb. Optim. 3, 213–225 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)CrossRefGoogle Scholar
  12. 12.
    Nakhleh, L., Warnow, T., Lindner, C.R., John, L.S.: Reconstructing reticulate evolution in species - theory and practice. J. Comput. Biol. 12, 796–811 (2005)CrossRefGoogle Scholar
  13. 13.
    Rodrigues, E.M., Sagot, M.-F., Wakabayashi, Y.: The maximum agreement forest problem: approximation algorithms and computational experiments. Theoret. Comput. Sci. 374, 91–110 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)CrossRefGoogle Scholar
  15. 15.
    Whidden, C., Beiko, R.G., Zeh, N.: Fast FPT algorithms for computing rooted agreement forests: theory and experiments. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 141–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Whidden, C., Zeh, N.: A unifying view on approximation and FPT of agreement forests. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 390–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information System DesignTokyo Denki UniversityHatoyamaJapan
  2. 2.Department of Computer ScienceCity University of Hong KongKowloonHong Kong SAR

Personalised recommendations