Advertisement

From Graph Orientation to the Unweighted Maximum Cut

  • Walid Ben-Ameur
  • Antoine GlorieuxEmail author
  • José Neto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

In this paper, starting from graph orientation problems, we introduce some new mixed integer linear programming formulations for the unweighted maximum cut problem. Then a new semidefinite relaxation is proposed and shown to be tighter than the Goemans and Williamson’s semidefinite relaxation. Preliminary computational results are also reported.

Keywords

Complete Graph Mixed Integer Linear Relaxation Graph Class Petersen Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anjos, M., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem. Discrete Appl. Math. 119, 79–106 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashcraft, C.C., Liu, J.W.H.: Using domain decomposition to find graph bisectors. Technical report CS-95-08, York University (1995)Google Scholar
  3. 3.
    Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36, 157–173 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ben-Ameur, W., Mahjoub, A.R., Neto, J.: The maximum cut problem. In: Paschos, V. (ed.) Paradigms of Combinatorial Optimization, pp. 131–172. Wiley-ISTE, Hoboken (2010)Google Scholar
  6. 6.
    Ben-Ameur, W., Neto, J.: On a gradient-based randomized heuristic for the maximum cut problem. Int. J. Math. Oper. Res. 4(3), 276–293 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Ameur, W., Neto, J.: Spectral bounds for the maximum cut problem. Networks 52(1), 8–13 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ben-Ameur, W., Neto, J.: Spectral bounds for unconstrained (-1, 1)-quadratic optimization problems. Eur. J. Oper. Res. 207(1), 15–24 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Calzarossa, M., Serazzi, G.: Workload characterization: a survey. Proc. IEEE 81, 1136–1150 (1993)CrossRefGoogle Scholar
  10. 10.
    Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dolezal, O., Hofmeister, T., Lefmann, H.: A comparison of approximation algorithms for the MaxCut problem, Report CI-/99, Universität Dortmund (1999)Google Scholar
  12. 12.
    Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the MAX-CUT problem. Optim. Methods Softw. 7, 1033–1058 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fischer, I., Gruber, G., Rendl, F., Sotirov, R.: Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and equipartition. Math. Program. 105, 451–469 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manage. Sci. 22, 455–460 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the Max-Cut problem. Oper. Res. Lett. 1, 23–27 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hammer, P.: Some network flow problems solved with pseudo-boolean programming. Oper. Res. 32, 388–399 (1965)MathSciNetGoogle Scholar
  18. 18.
    Hastad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. Technical report ZR-01-26, Konrad-Zuse-Zentrum Berlin (2001)Google Scholar
  20. 20.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computation, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  21. 21.
    Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving Max-Cut problems to optimality. Math. Program. 143(1–2), 61–86 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Laurent, M.: Tighter linear and semidefinite relaxations for Max-Cut based on the Lovász-Schrijver lift-and-project procedure. SIAM J. Optim. 2, 345–375 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Read, R.C., Wilson, R.J.: An Atlas of Graphs. Clarendon Press, Oxford (1998)zbMATHGoogle Scholar
  25. 25.
    Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations, IASI Research report 08–11 (2008)Google Scholar
  26. 26.
    Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture Notes for the MAPSP Tutorial Preliminary Version (2013)Google Scholar
  27. 27.
    Sahni, S., Gonzalez, T.: P-complete approximation algorithms. J. Assoc. Comput. Mach. 23(3), 555–565 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wiegele, A.: Nonlinear Optimization Techniques Applied to Combinatorial Optimization Problems. Ph.D. thesis, Alpen-Adria-Universitt Klagenfurt (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Samovar UMR 5157, Télécom SudParis, CNRS, Universit Paris-SaclayEvry CedexFrance

Personalised recommendations