Advertisement

On the Power of Simple Reductions for the Maximum Independent Set Problem

  • Darren StrashEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

Reductions—rules that reduce input size while maintaining the ability to compute an optimal solution—are critical for developing efficient maximum independent set algorithms in both theory and practice. While several simple reductions have previously been shown to make small domain-specific instances tractable in practice, it was only recently shown that advanced reductions (in a measure-and-conquer approach) can be used to solve real-world networks on millions of vertices [Akiba and Iwata, TCS 2016]. In this paper we compare these state-of-the-art reductions against a small suite of simple reductions, and come to two conclusions: just two simple reductions—vertex folding and isolated vertex removal—are sufficient for many real-world instances, and further, the power of the advanced rules comes largely from their initial application (i.e., kernelization), and not their repeated application during branch-and-bound. As a part of our comparison, we give the first experimental evaluation of a reduction based on maximum critical independent sets, and show it is highly effective in practice for medium-sized networks.

Keywords

Maximum independent set Minimum vertex cover Kernelization Reductions Exact algorithms 

References

  1. 1.
    Abu-Khzam, N.F., Fellows, R.M., Langston, A.M., Suters, H.W.: Crown structures for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411–430 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ageev, A.A.: On finding critical independent and vertex sets. SIAM J. Discrete Math. 7(2), 293–295 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Akiba, T., Iwata, Y.: Branch-and-reduce exponential, FPT algorithms in practice: a case study of vertex cover. Theor. Comput. Sci. 609(Part 1), 211–225 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andrade, D.V., Resende, M.G., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012)CrossRefGoogle Scholar
  5. 5.
    Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data/
  6. 6.
    Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of 20th International Conference on World Wide Web (WWW 2011), pp. 587–596. ACM Press (2011)Google Scholar
  8. 8.
    Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of 13th International Conference on World Wide Web (WWW 2004), pp. 595–601, Manhattan, USA, 2004. ACM PressGoogle Scholar
  9. 9.
    Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.: Fast algorithms for max independent set. Algorithmica 62(1–2), 382–415 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., Stetsyuk, P.: Estimating the size of correcting codes using extremal graph problems. In: Pearce, C., Hunt, E. (eds.) Optimization. Springer Optimization and Its Applications, vol. 32, pp. 227–243. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Butenko, S., Trukhanov, S.: Using critical sets to solve the maximum independent set problem. Oper. Res. Lett. 35(4), 519–524 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Sánchez Villaamil, F., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 529–540. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Garey, M., Johnson, D.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  17. 17.
    Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating maps. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 235–246. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In: Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 1749–1761. SIAM (2014)Google Scholar
  20. 20.
    Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Kunegis, J.: KONECT : the Koblenz network collection. In: Proceedings of 22nd International Conference on World Wide Web (WWW 2013), WWW 2013 Companion, pp. 1343–1350, New York, NY, USA, 2013. ACMGoogle Scholar
  22. 22.
    Larson, C.: A note on critical independence reductions. In: Bulletin of the Institute of Combinatorics and its Applications, vol. 51, pp. 34–46 (2007)Google Scholar
  23. 23.
    Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
  24. 24.
    Li, C.-M., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In: Proceedings of IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 939–946, November 2013Google Scholar
  25. 25.
    Nemhauser, G., Trotter, J.: L.E. vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    San Segundo, P., Rodrguez-Losada, D., Jimnez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sanchis, L.A., Jagota, A.: Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS J. Comput. 8(2), 87–102 (1996)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges using adjacency primitives. ACM Trans. Graph. 27(5), 144:1–144:9 (2008)CrossRefGoogle Scholar
  30. 30.
    Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)CrossRefGoogle Scholar
  31. 31.
    Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Verweij, B., Aardal, K.: An optimisation algorithm for maximum independent set with applications in map labelling. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 426–437. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469, 92–104 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhang, C.-Q.: Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math. 3(3), 431–438 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations