Advertisement

Inferring Sequences Produced by a Linear Congruential Generator on Elliptic Curves Using Coppersmith’s Methods

  • Thierry MefenzaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

We analyze the security of the Elliptic Curve Linear Congruential Generator (EC-LCG). We show that this generator is insecure if sufficiently many bits are output at each iteration. In 2007, Gutierrez and Ibeas showed that this generator is insecure given a certain amount of most significant bits of some consecutive values of the sequence. Using the Coppersmith’s methods, we are able to improve their security bounds.

Keywords

Elliptic Curve Linear Congruential Generator Lattice reduction Coppersmith’s methods Elliptic curves 

Notes

Acknowledgments

The author was supported in part by the French ANR JCJC ROMAnTIC project (ANR-12-JS02-0004) and by the Simons foundation Pole PRMAIS. I would like to thank anonymous referees for their helpful comments.

References

  1. [BCTV16]
    Benhamouda, F., Chevalier, C., Thillard, A., Vergnaud, D.: Easing Coppersmith methods using analytic combinatorics: applications to public-key cryptography with weak pseudorandomness. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 36–66. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49387-8_3 CrossRefGoogle Scholar
  2. [BD02]
    Beelen, P., Doumen, J.: Pseudorandom sequences from elliptic curves. In: Mullen, G.L., Stichtenoth, H., Tapia-Recillas, H. (eds.) Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp. 37–52. Springer, Berlin (2002)CrossRefGoogle Scholar
  3. [BSS99]
    Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  4. [BVZ12]
    Bauer, A., Vergnaud, D., Zapalowicz, J.-C.: Inferring sequences produced by nonlinear pseudorandom number generators using Coppersmith’s methods. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 609–626. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. [Cop96a]
    Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. [Cop96b]
    Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. [FS09]
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  8. [GBS00]
    Gong, G., Berson, T.A., Stinson, D.R.: Elliptic curve pseudorandom sequence generators. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 34–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. [GI07]
    Gutierrez, J., Ibeas, A.: Inferring sequences produced by a linear congruential generator on elliptic curves missing high-order bits. Des. Code Crypt. 45, 199–212 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [GL01]
    Gong, G., Lam, C.C.Y.: Linear recursive sequences over elliptic curves. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Proceedings of the International Conference on Sequences and Their Applications, Bergen, pp. 182–196. Springer, London (2001)Google Scholar
  11. [Hal94]
    Hallgren, S.: Linear congruential generators over elliptic curves. Preprint CS-94-143, Dept. of Comp. Sci. (1994)Google Scholar
  12. [HS02]
    Hess, F., Shparlinski, I.E.: On the linear complexity and multidimensional distribution of congruential generators over elliptic curves. Des. Code Crypt. 35, 111–117 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [JM06]
    Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. [MS02]
    Mahassni, E., Shparlinski, I.E.: On the uniformity of distribution of congruential generators over elliptic curves. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Proceedings of International Conference on Sequences and Their Applications, Bergen, pp. 257–264. Springer, London (2001, 2002)Google Scholar
  15. [Shp05]
    Shparlinski, I.E.: Pseudorandom points on elliptic curves over finite fields (2005). PreprintGoogle Scholar
  16. [Was08]
    Washington, L.C.: Elliptic Curves Number Theory and Cryptography, 2nd edn. Chapman and Hall/CRC, Boca Raton (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ENS, CNRS, INRIA, PSLParisFrance
  2. 2.Department of MathematicsUniversity of Yaounde 1YaoundéCameroon

Personalised recommendations