Advertisement

Four-Round Zero-Knowledge Arguments of Knowledge with Strict Polynomial-Time Simulation from Differing-Input Obfuscation for Circuits

  • Ning DingEmail author
  • Yanli Ren
  • Dawu Gu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

In this paper we present a 4-round zero-knowledge argument of knowledge for \(\mathbf {NP}\) with strict-polynomial-time simulation and expected polynomial-time extraction based on differing-input obfuscation for some circuit samplers and other reasonable assumptions.

Keywords

Commitment Scheme Homomorphic Encryption Original Message Public Input Auxiliary Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to the reviewers of COCOON 2016 for their useful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61572309) and Major State Basic Research Development Program (973 Plan) of China (Grant No. 2013CB338004) and Research Fund of Ministry of Education of China and China Mobile (Grant No. MCM20150301).

References

  1. 1.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. In: IACR Cryptology ePrint Archive 2013, p. 689 (2013)Google Scholar
  2. 2.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  3. 3.
    Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE Conference on Computational Complexity, pp. 194–203 (2002)Google Scholar
  4. 4.
    Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO, pp. 11–15, U. C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No. 82-04 (1981)Google Scholar
  5. 5.
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1987)Google Scholar
  6. 6.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-13190-5 CrossRefGoogle Scholar
  8. 8.
    Ding, N.: Obfuscation-based non-black-box extraction and constant-round zero-knowledge arguments of knowledge. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 120–139. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-13257-0_8 Google Scholar
  9. 9.
    Ding, N.: On zero-knowledge with strict polynomial-time simulation and extraction from differing-input obfuscation for circuits. In: Lehmann, A., Wolf, S. (eds.) Information Theoretic Security. LNCS, vol. 9063, pp. 51–68. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-17470-9_4 Google Scholar
  10. 10.
    Dodis, Y., Nielsen, J.B. (eds.): TCC 2015. LNCS, vol. 9015. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-46497-7 zbMATHGoogle Scholar
  11. 11.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426. ACM (1990)Google Scholar
  12. 12.
    Fischlin, M.: Trapdoor commitment schemes and their applications. Ph.D. thesis, Fachbereich Mathematik Johann Wolfgang Goethe-Universit at Frankfurt am Main (2001)Google Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-44371-2_29 CrossRefGoogle Scholar
  14. 14.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis and Nielsen [10], pp. 668–697. http://dx.doi.org/10.1007/978-3-662-46497-7_26 Google Scholar
  17. 17.
    Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991)Google Scholar
  18. 18.
    Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryptol. 26(4), 638–654 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 19, p. 164 (2012). http://dblp.uni-trier.de/db/journals/eccc/eccc19.html#OstrovskyV12
  20. 20.
    Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowledge for NP. In: Dodis and Nielsen [10], pp. 638–667. http://dx.doi.org/10.1007/978-3-662-46497-7_25 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of CryptologyBeijingChina
  3. 3.School of Communication and Information EngineeringShanghai UniversityShanghaiChina

Personalised recommendations