Advertisement

Homomorphic Evaluation of Lattice-Based Symmetric Encryption Schemes

  • Pierre-Alain FouqueEmail author
  • Benjamin Hadjibeyli
  • Paul Kirchner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

Optimizing performance of Fully Homomorphic Encryption (FHE) is nowadays an active trend of research in cryptography. One way of improvement is to use a hybrid construction with a classical symmetric encryption scheme to transfer encrypted data to the Cloud. This allows to reduce the bandwidth since the expansion factor of symmetric schemes (the ratio between the ciphertext and the plaintext length) is close to one, whereas for FHE schemes it is in the order of 1,000 to 1,000,000. However, such a construction requires the decryption circuit of the symmetric scheme to be easy to evaluate homomorphically. Several works have studied the cost of homomorphically evaluating classical block ciphers, and some recent works have suggested new homomorphic oriented constructions of block ciphers or stream ciphers. Since the multiplication gate of FHE schemes usually squares the noise of the ciphertext, we cannot afford too many multiplication stages in the decryption circuit. Consequently, FHE-friendly symmetric encryption schemes have a decryption circuit with small multiplication depth.

We aim at minimizing the cost of the homomorphic evaluation of the decryption of symmetric encryption schemes. To do so, we focus on schemes based on learning problems: Learning With Errors (LWE), Learning Parity with Noise (LPN) and Learning With Rounding (LWR). We show that they have lower multiplicative depth than usual block ciphers, and hence allow more FHE operations before a heavy bootstrapping becomes necessary. Moreover, some of them come with a security proof. Finally, we implement our schemes in HElib. Experimental evidence shows that they achieve lower amortized and total running time than previous performance from the literature: our schemes are from 10 to 10,000 more efficient for the time per bit and the total running time is also reduced by a factor between 20 to 10,000. Of independent interest, the security of our LWR-based scheme is related to LWE and we provide an efficient security proof that allows to take smaller parameters.

References

  1. 1.
    Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak pseudorandom functions in AC0\(\circ \)MOD\(_2\). In: Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, 12–14 January 2014, pp. 251–260 (2014)Google Scholar
  2. 2.
    Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. In: IACR Cryptology ePrint Archive 2014, p. 1018 (2014)Google Scholar
  3. 3.
    Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Applebaum, B.: Cryptographic hardness of random local functions - survey. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 22, p. 27 (2015)Google Scholar
  6. 6.
    Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011Google Scholar
  9. 9.
    Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P., Sirdey, R.: How to compress homomorphic ciphertexts. In: IACR Cryptology ePrint Archive 2015, p. 113 (2015)Google Scholar
  10. 10.
    Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on LowMC. Cryptology ePrint Archive, Report 2015/418 (2015). http://eprint.iacr.org/ Google Scholar
  12. 12.
    Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC. Cryptology ePrint Archive, Report 2015/407 (2015). http://eprint.iacr.org/
  13. 13.
    Doroz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using NTRU. Cryptology ePrint Archive, Report 2014/039 (2014). http://eprint.iacr.org/2014/039
  14. 14.
    Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic evaluation of block ciphers using prince. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 208–220. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–202. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  17. 17.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluationof the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Gilbert, H., Robshaw, M., Seurin, Y.: How to encrypt with the LPN problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: Verifying and decoding in constant depth. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 440–449. ACM Press, June 2007Google Scholar
  20. 20.
    Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes \({\sf {FV}}\) and \({\sf {YASHE}}\). In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Mella, S., Susella, R.: On the homomorphic computation of symmetric cryptographic primitives. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 28–44. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011)Google Scholar
  25. 25.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)Google Scholar
  26. 26.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4, 169–179 (1978). Academia PressMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pierre-Alain Fouque
    • 1
    • 3
    Email author
  • Benjamin Hadjibeyli
    • 2
  • Paul Kirchner
    • 3
  1. 1.Institut Universitaire de FranceUniversité de Rennes 1RennesFrance
  2. 2.École normale supérieure de LyonLyonFrance
  3. 3.École normale supérieureParisFrance

Personalised recommendations