The Effect of Range and Bandwidth on the Round Complexity in the Congested Clique Model

  • Florent Becker
  • Antonio Fernández Anta
  • Ivan RapaportEmail author
  • Eric Rémila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)


The congested clique model is a message-passing model of distributed computation where k players communicate with each other over a complete network. Here we consider synchronous protocols in which communication happens in rounds (we allow them to be randomized with public coins). In the unicast communication mode, each player i has her own n-bit input \(x_i\) and may send \(k-1\) different b-bit messages through each of her \(k-1\) communication links in each round. On the other end is the broadcast communication mode, where each player can only broadcast a single message over all her links in each round. The goal of this paper is to complete our Brief Announcement at PODC 2015, where we initiated the study of the space that lies between the two extremes. For that purpose, we parametrize the congested clique model by two values: the range r, which is the maximum number of different messages a player is allowed to send in each round, and the bandwidth b, which is the maximum size of these messages. We show that the space between the unicast and broadcast congested clique models is very rich and interesting. For instance, we show that the round complexity of the pairwise set-disjointness function \(\textsc {pwdisj}\) is completely sensitive to the range r. This translates into a \(\varOmega (k)\) gap between the unicast (\(r=k-1\)) and the broadcast (\(r=1\)) modes. Moreover, provided that \(r \ge 2\) and \(rb/\log r = O(k)\), the round complexity of \(\textsc {pwdisj}\) is \(\varTheta (n/ k \log r )\). On the other hand, we also prove that the behavior of \(\textsc {pwdisj}\) is exceptional: almost every boolean function f has maximal round complexity \(\varTheta (n/b)\). Finally, we prove that \(\min \left( \left\lceil \frac{b'}{\lfloor \log r \rfloor } \right\rceil , \left\lceil \frac{r'}{r-1}\right\rceil \left\lceil \frac{b'}{b}\right\rceil \right) \) is an upper bound for the gap between the round complexities with parameters (br) and parameters \((b',r')\) of any boolean function.


  1. 1.
    Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Proceedings of SODA 2012, pp. 459–467 (2012)Google Scholar
  2. 2.
    Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: Proceedings of PODS 2012, pp. 5–14 (2012)Google Scholar
  3. 3.
    Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. In: Proceedings of FOCS 2002, pp. 209–218 (2002)Google Scholar
  4. 4.
    Becker, F., Fernández Anta, A., Rapaport, I., Rémila, E.: Brief announcement: a hierarchy of congested clique models, from broadcast to unicast. In: Proceedings of PODC 2015, pp. 167–169 (2015)Google Scholar
  5. 5.
    Becker, F., Kosowski, A., Nisse, N., Rapaport, I., Suchan, K.: Allowing each node to communicate only once in a distributed system: shared whiteboard models. In: Proceedings of SPAA 2012, pp. 11–17 (2012)Google Scholar
  6. 6.
    Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding a referee to an interconnection network: what can (not) be computed in one round. In: Proceedings of IPDPS 2011, pp. 508–514 (2011)Google Scholar
  7. 7.
    Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-in-hand communication model for networks: private coins, public coins and determinism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight bound for set disjointness in the message-passing model. In: Proceedings of FOCS 2013, pp. 668–677 (2013)Google Scholar
  9. 9.
    Braverman, M., Oshman, R.: On information complexity in the broadcast model. In: Proceedings of PODC 2015, pp. 355–364 (2015)Google Scholar
  10. 10.
    Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: Proceedings of PODC 2015, pp. 143–152Google Scholar
  11. 11.
    Chakrabart, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proceedings of FOCS 2001, pp. 270–278. IEEE (2001)Google Scholar
  12. 12.
    Chattopadhyay, A., Mukhopadhyay, S.: Tribes is hard in the message passing model. In: Proceedings of STACS 2009, pp. 224–237 (2015)Google Scholar
  13. 13.
    Dolev, D., Feder, T.: Multiparty communication complexity. In: Proceedings of FOCS 1989, pp. 428–433 (1989)Google Scholar
  14. 14.
    Dolev, D., Lenzen, C., Peled, S.: “Tri, Tri Again”: finding triangles and small subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 195–209. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of PODC 2014, pp. 367–376 (2014)Google Scholar
  16. 16.
    Ďuriš, P., Rolim, J.D.: Lower bounds on the multiparty communication complexity. J. Comput. Syst. Sci. 56(1), 90–95 (1998)Google Scholar
  17. 17.
    Gronemeier, A.: Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and disjointness. In: Proceedings of STACS 2009, pp. 505–516 (2009)Google Scholar
  18. 18.
    Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic graph streams. In: Proceedings of PODS 2015, pp. 241–247 (2015)Google Scholar
  19. 19.
    Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In: Proceedings of PODC 2015, pp. 91–100 (2015)Google Scholar
  20. 20.
    Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to MapReduce. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 149–164. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time distributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 514–530. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraph problem in the randomized multiparty simultaneous messages model. In: Scheideler, C. (ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370–384. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  24. 24.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  25. 25.
    Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In: Proceedings of PODC 2013, pp. 42–50 (2013)Google Scholar
  26. 26.
    Li, Y., Sun, X., Wang, C., Woodruff, D.P.: On the communication complexity of linear algebraic problems in the message passing model. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 499–513. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Lotker, Z., Pavlov, E.: MST construction in \({O}(\log \log n)\) communication rounds. In: Proceedings of SPAA 2003, pp. 94–100 (2003)Google Scholar
  28. 28.
    Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting. In: Proceedings of PODC 2011, pp. 249–256 (2011)Google Scholar
  29. 29.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  30. 30.
    Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multi-party communication complexity, made easy. In: Proceedings of SODA 2012, pp. 486–501Google Scholar
  31. 31.
    Woodruff, D.P., Zhang, Q.: An optimal lower bound for distinct elements in the message passing model. In: Proceedings of SODA 2014, pp. 718–733 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Florent Becker
    • 1
  • Antonio Fernández Anta
    • 2
  • Ivan Rapaport
    • 3
    Email author
  • Eric Rémila
    • 4
  1. 1.LIFO (EA 4022)Université d’OrléansOrléansFrance
  2. 2.IMDEA Networks InstituteMadridSpain
  3. 3.DIM-CMM (UMI 2807 CNRS)Universidad de ChileSantiagoChile
  4. 4.Univ. Lyon, UJM Saint-EtienneSaint-EtienneFrance

Personalised recommendations