Advertisement

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio

  • Ching-Lueh ChangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

Consider the problem of finding a point in a metric space \((\{1,2,\ldots ,n\},d)\) with the minimum average distance to other points. We show that this problem has no deterministic \(o(n^{1+1/(h-1)})\)-query \((2h-\epsilon )\)-approximation algorithms for any constants \(h\in \mathbb {Z}^+\setminus \{1\}\) and \(\epsilon >0\).

References

  1. 1.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chang, C.-L.: A deterministic sublinear-time nonadaptive algorithm for metric \(1\)-median selection. To appear in Theoretical Computer ScienceGoogle Scholar
  3. 3.
    Chang, C.-L.: Some results on approximate \(1\)-median selection in metric spaces. Theor. Comput. Sci. 426, 1–12 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, C.-L.: Deterministic sublinear-time approximations for metric \(1\)-median selection. Inf. Process. Lett. 113(8), 288–292 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chang, C.-L.: A lower bound for metric \(1\)-median selection. Technical report. arXiv:1401.2195 (2014)
  6. 6.
    Chen, K.: On coresets for \(k\)-median and \(k\)-means clustering in metric and Euclidean spaces and their applications. SIAM J. Comput. 39(3), 923–947 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528 (2003)CrossRefGoogle Scholar
  8. 8.
    Indyk, P.: Sublinear time algorithms for metric space problems. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 428–434 (1999)Google Scholar
  9. 9.
    Indyk, P.: High-Dimensional Computational Geometry. Ph.D. thesis, Stanford University (2000)Google Scholar
  10. 10.
    Jaiswal, R., Kumar, A., Sen, S.: A simple \({D}^2\)-sampling based PTAS for \(k\)-means and other clustering problems. In: Proceedings of the 18th Annual International Conference on Computing and Combinatorics, pp. 13–24 (2012)Google Scholar
  11. 11.
    Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clustering problems in any dimensions. J. ACM 57(2), 5 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mettu, R.R., Plaxton, C.G.: Optimal time bounds for approximate clustering. Mach. Learn. 56(1–3), 35–60 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wu, B.-Y.: On approximating metric \(1\)-median in sublinear time. Inf. Process. Lett. 114(4), 163–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringYuan Ze UniversityTaoyuanTaiwan

Personalised recommendations