Skip to main content

Trends in Fibre-Optic Uses for Personal Healthcare and Clinical Diagnostics

  • Chapter
  • First Online:
Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

  • 3075 Accesses

Abstract

Along this chapter, a different point of view on the sensing uses of optical fibre is shown, focusing on its applicability to medical diagnostics. A wide majority of the fibre-optic-based structures described in this book can be used in medicine. But there are some challenges for fibre-optics to be fulfilled in the future when talking about healthcare. First, current society strongly demands day-by-day applications. This means, technologies that permit their use ‘on the go’ such as wearables or their integration in our smartphones . Second, due to the reduced dimensions of the optical fibre, there is an increasing interest in introducing it into the body, as it occurs when using catheters or fibrescopes. Moreover, the need for analysing biological substances makes it crucial to use reduced size devices that permit their interaction with the biomolecules, once the samples have been extracted from the patient. And of course, all the addressed applications must be achieved in order to search for cheap devices that work under exigent conditions. The main goal of this chapter is to search for those applications that will lead us to use fibre-optics for self-healthcare and diagnose patients in the next times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R.N. Monton, E.M. Forsberg, J.D. Brennan, Tailoring sol-gel-derived silica materials for optical biosensing. Chem. Mater. 24, 796–811 (2012). doi:10.1021/cm202798e

    Article  Google Scholar 

  2. X.D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2013–2015). Anal. Chem. 88, 203–227 (2016). doi:10.1021/acs.analchem.5b04298

    Article  Google Scholar 

  3. A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky et al., Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications. Laser Photon. Rev. 8, 450–457 (2014). doi:10.1002/lpor.201300204

    Article  Google Scholar 

  4. X.-D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85, 487–508 (2013). doi:10.1021/ac303159b

    Article  Google Scholar 

  5. R. Sroka, K. Weick, M. Sadeghi-Azandaryani, B. Steckmeier, C.-G. Schmedt, Endovenous laser therapy–application studies and latest investigations. J. Biophoton. 3, 269–276 (2010). doi:10.1002/jbio.200900097

    Article  Google Scholar 

  6. G. Cheymol, B. Brichard, J.F. Villard, Fiber optics for metrology in nuclear research reactors—applications to dimensional measurements. IEEE Trans. Nucl. Sci. 58, 1895–1902 (2011). doi:10.1109/TNS.2011.2160356

    Article  Google Scholar 

  7. W. Hou, G. Liu, M. Han, A novel, high-resolution, high-speed fiber-optic temperature sensor for oceanographic applications, in IEEE 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), 2015, pp. 1–4. doi:10.1109/CWTM.2015.7098149

  8. M. Pospíšilová, G Kuncová, J Trögl, Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors (Switzerland) 15, 25208–25259 (2015). doi:10.3390/s151025208

  9. C.R. Zamarreño, A.B. Socorro, P. Sanchez, I.R. Matias, F.J. Arregui, Fiber-Optic Biosensors. Book chapter in Encyclopedia of Optical and Photonic Engineering, Second Edition (Print)–Five Volume Set (Taylor & Francis, CRC Press, 2015) p. 3858

    Google Scholar 

  10. O. Harbater, I. Gannot, Fluorescent probes concentration estimation in vitro and ex vivo as a model for early detection of Alzheimer’s disease. J. Biomed. Opt. 19, 127007 (2014). doi:10.1117/1.JBO.19.12.127007

    Article  Google Scholar 

  11. C. Massaroni, P. Saccomandi, E. Schena, Medical smart textiles based on fiber optic technology: an overview. J. Funct. Biomater. 6, 204–221 (2015). doi:10.3390/jfb6020204

    Article  Google Scholar 

  12. J. Rantala, J. Hännikäinen, J. Vanhala, Fiber optic sensors for wearable applications. Pers. Ubiquit. Comput. 15, 85–96 (2011). doi:10.1007/s00779-010-0303-y

    Article  Google Scholar 

  13. L. Piwek, D.A. Ellis, S. Andrews, A. Joinson, The Rise of Consumer Health Wearables : Promises and Barriers. Do wearables effect behaviour ? (2016) pp. 1–10. doi:10.1371/journal.pmed.1001953

  14. C. Gopalsamy, S. Park, R. Rajamanickam, S. Jayaraman, The wearable motherboardTM: the first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality. 4, 152–168 (1999), http://www.scopus.com/inward/record.url?eid=2-s2.0-42949160345&partnerID=tZOtx3y1

  15. S. Martin, Smart Clothing, (n.d.), http://ldt.stanford.edu/~jeepark/jeepark+portfolio/cs147hw8jeepark.html

  16. T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch, et al., Augmented reality through wearable computing. Presence: Teleoperators Virtual Environ. 6, 386–398 (1997), http://www.scopus.com/inward/record.url?eid=2-s2.0-0039329626&partnerID=tZOtx3y1

  17. K. Krebber, S. Liehr, J. Witt, Smart technical textiles based on fibre optic sensors. in OFS 2012 22 International Conference on Optical Fiber Sensors, Invited Paper. 8421 (2012) 84212A–10. doi:10.1117/12.981342

  18. Novel Sensors and Sensing (Series in Sensors): Roger G. Jackson, ISBN 9780750309899 (Taylor & Francis Group, 2004), p. 512

    Google Scholar 

  19. K. Krebber, P. Lenke, S. Liehr, J. Witt, M. Schukar, Smart technical textiles with integrated POF sensors, in The 15 International Symposium on: Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, ed. by W. Ecke, K.J. Peters, N.G. Meyendorf (2008), pp. 69330V–69330V–15. doi:10.1117/12.776758

  20. M.R. Voet, A. Nancey, J. Vlekken, Geodetect: a new step for the use of fibre Bragg grating technology in soil engineering, in International Society for Optics and Photonics, ed. by M. Voet, R. Willsch, W. Ecke, J. Jones, B. Culshaw (Bruges, Belgium—Deadline Past, 2005), pp. 214–217. doi:10.1117/12.623799

  21. T. Allsop, R. Revees, D.J. Webb, I. Bennion, T. Earthrowl, B. Jones, et al., Respiratory monitoring using fibre long period grating sensors, in Progress in Biomedical Optics and Imaging—Proceedings of SPIE (2005), pp. 1–6, http://www.scopus.com/inward/record.url?eid=2-s2.0-28844497766&partnerID=tZOtx3y1

  22. J. Witt, K. Krebber, Fiber optic heart rate sensor for integration into personal protective equipment. IEEE Sens. J. 6, 6–8 (2011). doi:10.1109/IWBP.2011.5954836

    Google Scholar 

  23. Manhattan Research, Physicians in 2012: The Outlook for On Demand, Mobile, and Social Digital Media: A Physician Module Report (Manhattan Research, New York, 2009)

    Google Scholar 

  24. A.S.M. Mosa, I. Yoo, L. Sheets, A systematic review of healthcare applications for smartphones. BMC Med. Inform. Decis. Mak. 12, 67 (2012). doi:10.1186/1472-6947-12-67

    Article  Google Scholar 

  25. G. Ferriero, S. Vercelli, F. Sartorio, S. Muñoz Lasa, E. Ilieva, E. Brigatti, et al., Reliability of a smartphone-based goniometer for knee joint goniometry. Int. J. Rehabil. Res. Internationale Zeitschrift Für Rehabilitationsforschung. Revue Internationale de Recherches de Réadaptation. 36, 146–51 (2013). doi:10.1097/MRR.0b013e32835b8269

  26. G. Ferriero, S. Di Carlo, F. Sartorio, S. Vercelli, The increasing importance of photographic-based apps for goniometry. Telemed. E-Health. 21, 1042–1043 (2015). doi:10.1089/tmj.2015.0030

    Article  Google Scholar 

  27. B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei et al., Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano 9, 7857–7866 (2015). doi:10.1021/acsnano.5b03203

    Article  Google Scholar 

  28. C.C. Stemple, S.V. Angus, T.S. Park, J.-Y. Yoon, Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood. J. Lab. Autom. 19, 35–41 (2014). doi:10.1177/2211068213498241

    Article  Google Scholar 

  29. K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23, 17179–17184 (2015). doi:10.1364/OE.23.017179

    Article  Google Scholar 

  30. Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, W. Peng, surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 5, 12864 (2015). doi:10.1038/srep12864

  31. C. Shi, S. Giannarou, S. Lee, G. Yang, Simultaneous catheter and environment modeling for trans-catheter aortic valve implantation, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 2024–2029. doi:10.1109/IROS.2014.6942832

  32. A. Nilsson, Q. Zhang, J. Styf, Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg. J. Clin. Monit. Comput. (2015). doi:10.1007/s10877-015-9750-3

    Google Scholar 

  33. S. Poeggel, D. Tosi, F. Fusco, J. Ippolito, L. Lupoli, V. Mirone et al., Fiber-optic EFPI pressure sensors for In Vivo urodynamic analysis. IEEE Sens. J. 14, 2335–2340 (2014). doi:10.1109/JSEN.2014.2310392

    Article  Google Scholar 

  34. E. LifeSciences, Advanced Hemodynamic Monitoring with the Edwards Swan-Ganz Catheter, vol. 2 (Edwards LifeSciences, 2009)

    Google Scholar 

  35. J. Kovaleva, F.T.M. Peters, H.C. van der Mei, J.E. Degener, Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin. Microbiol. Rev. 26, 231–254 (2013). doi:10.1128/CMR.00085-12

    Article  Google Scholar 

  36. W.K. Johnston, The birth of fiberoptics from “light guiding”. J. Endourology / Endourological Soc. 18, 425–426 (2004). doi:10.1089/0892779041271445

    Article  Google Scholar 

  37. J.M. Edmonson, History of the instruments for gastrointestinal endoscopy. Gastrointest. Endosc. 37 (1991), http://www.scopus.com/inward/record.url?eid=2-s2.0-0025899993&partnerID=tZOtx3y1

  38. Olympus, vol. 3 Birth of Fiberscopes (n.d.), http://www.olympus-global.com/en/corc/history/story/endo/fiber/

  39. P. Urquhart, R. Dacosta, N. Marcon, Endoscopic mucosal imaging of gastrointestinal neoplasia in 2013 topical collection on GI oncology. Curr. Gastroenterol. Rep. 15 (2013). doi:10.1007/s11894-013-0330-8

  40. H. Niwa, Invention of gastrocamera and it’s improvements. Gastroenterol. Endosc. 49, 1615–1638 (2007), http://www.scopus.com/inward/record.url?eid=2-s2.0-34548011061&partnerID=tZOtx3y1

  41. B. Krans, Endoscopy. Healthline 6 (2015), http://www.healthline.com/health/endoscopy#Overview1

  42. M. Abad, J.L. Arce, Study of colonoscopic laser surgery applied to tumoral tissue resection, Santander, 2014

    Google Scholar 

  43. A. Katzir, Lasers and Optical Fibers in Medicine ISBN: 9780124019409 (1993), p. 317

    Google Scholar 

  44. J. Sauk, E. Coron, L. Kava, M. Suter, M. Gora, K. Gallagher et al., Interobserver agreement for the detection of barrett’s esophagus with optical frequency domain imaging. Dig. Dis. Sci. 58, 2261–2265 (2013). doi:10.1007/s10620-013-2625-x

    Article  Google Scholar 

  45. D.F. Boerwinkel, A.F. Swager, W.L. Curvers, J.J.G.H.M. Bergman, The Clinical Consequences of Advanced Imaging Techniques in Barrett’s Esophagus. Gastroenterology. 146(3), 622–629.e4 (2014). ISSN 0016-5085, http://dx.doi.org/10.1053/j.gastro.2014.01.007

  46. R. Singh, S.Y. Lee, N. Vijay, P. Sharma, N. Uedo, Update on narrow band imaging in disorders of the upper gastrointestinal tract. Dig Endosc. 26, 144–153 (2014). doi:10.1111/den.12207

    Article  Google Scholar 

  47. G.L. Cote, R.M. Lec, M.V. Pishko, Emerging biomedical sensing technologies and their applications. IEEE Sens. J. 3(3), 251–266 (2003). doi:10.1109/JSEN.2003.814656

    Article  Google Scholar 

  48. R. Taylor, J.S. Schultz, Handbook of Chemical and Biological Sensors, ISBN: 0750303239, IOP Publishing Ltd 1996. Reprinted in 2003, p. 607

    Google Scholar 

  49. E. Mauriz, M.C. García-Fernández, L.M. Lechuga, Towards the design of universal immunosurfaces for SPR-based assays: a review. TrAC Trends Anal. Chem. (2016). doi:10.1016/j.trac.2016.02.006

    Google Scholar 

  50. M. Soler, M.C. Estevez, M. Alvarez, M.A. Otte, B. Sepulveda, L.M. Lechuga, Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies. Sensors (Basel, Switzerland). 14, 2239–2258 (2014). doi:10.3390/s140202239

  51. J.M. Corres, I.R. Matias, J. Bravo, F.J. Arregui, Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. Sens. Actuators B: Chem. 135, 166–171 (2008). doi:10.1016/j.snb.2008.08.008

    Article  Google Scholar 

  52. D. Futra, L. Heng, A. Ahmad, S. Surif, T. Ling, An optical biosensor from green fluorescent escherichia coli for the evaluation of single and combined heavy metal toxicities. Sensors 15, 12668–12681 (2015). doi:10.3390/s150612668

    Article  Google Scholar 

  53. X. Lv, J. Mo, L. Xu, Z. Jia, Biochemical sensing application based on optical fiber evanescent wave sensor, Proc. SPIE 9620, 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, 96200T (10 August 2015); doi:10.1117/12.2191430

  54. Y. Huang, Z. Tian, L.-P. Sun, D. Sun, J. Li, Y. Ran et al., High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle. Opt. Express 23, 26962–26968 (2015). doi:10.1364/OE.23.026962

    Article  Google Scholar 

  55. N. Cennamo, M. Pesavento, L. Lunelli, L. Vanzetti, C. Pederzolli, L. Zeni et al., An easy way to realize SPR aptasensor: a multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 140, 88–95 (2015). doi:10.1016/j.talanta.2015.03.025

    Article  Google Scholar 

  56. K.V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, T. Yu, Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Sci. Rep. 2, 737 (2012). doi:10.1038/srep00737

    Article  Google Scholar 

  57. M.C. Estevez, M.A. Otte, B. Sepulveda, L.M. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal. Chim. Acta 806, 55–73 (2014). doi:10.1016/j.aca.2013.10.048

    Article  Google Scholar 

  58. H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, B.-C. Sheu, Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light. Appl. Opt. 46, 800–806 (2007). doi:10.1364/AO.46.000800

    Article  Google Scholar 

  59. Y. Jin, K.H. Wong, A.M. Granville, Developing localized surface plasmon resonance biosensor chips and fiber optics via direct surface modification of PMMA optical waveguides. Colloids Surf. A 492, 100–109 (2016). doi:10.1016/j.colsurfa.2015.11.025

    Article  Google Scholar 

  60. J. Cao, M.H. Tu, T. Sun, K.T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens. Actuators, B: Chem. 181, 611–619 (2013). doi:10.1016/j.snb.2013.02.052

    Article  Google Scholar 

  61. C. Caucheteur, T. Guo, J. Albert, Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 3883–3897 (2015). doi:10.1007/s00216-014-8411-6

  62. M. Iga, A. Seki, K. Watanabe, Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens. Actuators B: Chem. 101(3), 368–372 (2004). http://dx.doi.org/10.1016/j.snb.2004.04.007

    Article  Google Scholar 

  63. M. Kanso, S. Cuenot, G. Louarn, sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics 3, 49–57 (2008). doi:10.1007/s11468-008-9055-1

    Article  Google Scholar 

  64. Y.S. Dwivedi, A.K. Sharma, B.D. Gupta, influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor. Plasmonics 3, 79–86 (2008). doi:10.1007/s11468-008-9057-z

    Article  Google Scholar 

  65. J. Pollet, F. Delport, M. Wevers, J. Lammertyn, Aptamer-based surface plasmon resonance probe, in 2008 IEEE Sensors,( IEEE, 2008), pp. 1187–1190. doi:10.1109/ICSENS.2008.4716654

  66. A.B. Socorro, Study and Design of Thin-Film Coated Optical Biosensong Devices Based on Wavelength Detection of Resonances (Ph.D. dissertation at Public University of Navarre, 2015), http://academica-e.unavarra.es/handle/2454/16736

  67. I. Del Villar, M. Hernaez, C.R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F.J. Arregui et al., Design rules for lossy mode resonance based sensors. Appl. Opt. 51, 4298 (2012). doi:10.1364/AO.51.004298

    Article  Google Scholar 

  68. I. Del Villar, C.R. Zamarreño, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui et al., Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Opt. 12, 095503 (2010). doi:10.1088/2040-8978/12/9/095503

    Article  Google Scholar 

  69. C.R. Zamarreño, M. Hernáez, I. Del Villar, I.R. Matías, F.J. Arregui, Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators, B: Chem. 155, 290–297 (2011). doi:10.1016/j.snb.2010.12.037

    Article  Google Scholar 

  70. C. Ruiz Zamarreño, P. Zubiate, M. Sagües, I.R. Matias, F.J. Arregui, Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations. Opt. Lett. 38, 2481–2483 (2013). doi:10.1364/OL.38.002481

    Article  Google Scholar 

  71. I. Del Villar, C.R. Zamarreno, M. Hernaez, F.J. Arregui, I.R. Matias, Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. 28, 111–117 (2010). doi:10.1109/JLT.2009.2036580

    Article  Google Scholar 

  72. A.B. Socorro, J.M. Corres, I. Del Villar, F.J. Arregui, I.R. Matias, Fiber-optic biosensor based on lossy mode resonances. Sens. Actuators B: Chem. 174, 263–269 (2012). doi:10.1016/j.snb.2012.07.039

    Article  Google Scholar 

  73. A.B. Socorro, I. Del Villar, J.M. Corres, F.J. Arregui, I.R. Matias, Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B: Chem. 200, 53–60 (2014). doi:10.1016/j.snb.2014.04.017

    Article  Google Scholar 

  74. L. Razquin, C.R. Zamarreno, F.J. Munoz, I.R. Matias, F.J. Arregui, Thrombin detection by means of an aptamer based sensitive coating fabricated onto LMR-based optical fiber refractometer, in 2012 IEEE Sensors (IEEE, 2012), pp. 1–4. doi:10.1109/ICSENS.2012.6411186

  75. C.R. Zamarreno, I. Ardaiz, L. Ruete, F.J. Munoz, I.R. Matias, F.J. Arregui, C-reactive protein aptasensor for early sepsis diagnosis by means of an optical fiber device, in 2013 IEEE Sensors (IEEE, 2013), pp. 1–4. doi:10.1109/ICSENS.2013.6688222

  76. P. Sanchez, P. Zubiate, F.J. Munoz, F.J. Arregui, I.R. Matias, C.R. Zamarreño, ​Lossy mode resonance-based aptasensor for CRP detection, 26th Anniversary World Congress on Biosensors. (Gothenburg, Sweden, 2016)

    Google Scholar 

  77. P. Sanchez, C.R. Zamarreño, M. Hernaez, I.R. Matias, F.J. Arregui, Optical fiber refractometers based on lossy mode resonances by means of SnO2 sputtered coatings. Sens. Actuators B: Chem. 202, 154–159 (2014). doi:10.1016/j.snb.2014.05.065

    Article  Google Scholar 

  78. F.J. Arregui, I. Del Villar, C.R. Zamarreño, P. Zubiate, I.R. Matias, Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sens. Actuators B: Chem. (2016). doi:10.1016/j.snb.2016.04.015

  79. A.B. Socorro, J.M. Corres, I. Del Villar, F.J. Arregui, I.R. Matias, Immunoglobulin G biosensor based on lossy mode resonances generated on coated tapered optical fiber, Proc. Trends in Nanotechnology (TNT) 2012 Conference, (Phantoms Foundation, Madrid (Spain), 2012)

    Google Scholar 

  80. I. Del Villar, Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point. Opt. Express 23, 8389 (2015). doi:10.1364/OE.23.008389

    Article  MathSciNet  Google Scholar 

  81. F. Chiavaioli, P. Biswas, C. Trono, A. Giannetti, S. Tombelli, S. Bandyopadhyay, et al., IgG/anti-IgG immunoassay based on a turn-around point long period grating, in SPIE BiOS, International Society for Optics and Photonics, ed. by T. Vo-Dinh, A. Mahadevan-Jansen, W.S. Grundfest (2014), p. 89350 V. doi:10.1117/12.2039782

  82. F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli et al., Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings. Biosens. Bioelectron. 60, 305–310 (2014). doi:10.1016/j.bios.2014.04.042

    Article  Google Scholar 

  83. L. Marques, F.U. Hernandez, S.W. James, S.P. Morgan, M. Clark, R.P. Tatam et al., Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 75, 222–231 (2016). doi:10.1016/j.bios.2015.08.046

    Article  Google Scholar 

  84. S.W. James, S. Korposh, S.W. Lee, R.P. Tatam. A long period grating-based chemical sensor insensitive to the influence of interfering parameters. Opt. Express 22(7), 8012–23 (2014). doi:10.1364/OE.22.008012. PubMed PMID: 24718176

  85. S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S.W. James, R.P. Tatam, Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water. Mater. Chem. Phys. 133, 784–792 (2012). doi:10.1016/j.matchemphys.2012.01.094

    Article  Google Scholar 

  86. G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli et al., Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria. Sens. Actuators B: Chem. 230, 510–520 (2016). doi:10.1016/j.snb.2016.02.086

    Article  Google Scholar 

  87. G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico et al., Long period fiber grating nano-optrode for cancer biomarker detection. Biosens. Bioelectron. 80, 590–600 (2016). doi:10.1016/j.bios.2016.02.021

    Article  Google Scholar 

  88. E. Timurdogan, B.E. Alaca, I.H. Kavakli, H. Urey, MEMS biosensor for detection of Hepatitis A and C viruses in serum. Biosens. Bioelectron. 28, 189–194 (2011). doi:10.1016/j.bios.2011.07.014

    Article  Google Scholar 

  89. S. Demming, J. Vila-Planas, S. Aliasghar Zadeh, A. Edlich, E. Franco-Lara, R. Radespiel, et al., Poly(dimethylsiloxane) photonic microbioreactors based on segmented waveguides for local absorbance measurement. Electrophoresis. 32, 431–439 (2011). doi:10.1002/elps.201000482

  90. H.K. Hunt, C. Soteropulos, A.M. Armani, Bioconjugation strategies for microtoroidal optical resonators. Sensors (Switzerland). 10, 9317–9336 (2010). doi:10.3390/s101009317

    Article  Google Scholar 

  91. A. Cusano, D. Paladino, A. Iadicicco, Microstructured fiber bragg gratings. J. Lightwave Technol. 27, 1663–1697 (2009). doi:10.1109/JLT.2009.2021535

    Article  Google Scholar 

  92. G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano et al., Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection. Sens. Actuators B: Chem. 152, 196–205 (2011). doi:10.1016/j.snb.2010.12.007

    Article  Google Scholar 

  93. A. Buosciolo, M. Consales, M. Pisco, A. Cusano, M. Giordano, Fiber-optic near-field chemical sensors based on wavelength scale tin dioxide particle layers. J. Lightwave Technol. 26, 3468–3475 (2008). doi:10.1109/JLT.2008.927792

    Article  Google Scholar 

  94. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, A. Cusano, Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol. 19, 772–784 (2013). doi:10.1016/j.yofte.2013.07.010

    Article  Google Scholar 

  95. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, A. Cusano, Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices. ACS Photon. 1, 69–78 (2014). doi:10.1021/ph400075r

    Article  Google Scholar 

  96. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, A. Cusano, Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6, 3163–3170 (2012). doi:10.1021/nn204953e

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Economy and Competitiveness Ministry through a project with reference FEDER TEC2013-43679-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Socorro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Socorro, A.B., Díaz, S. (2017). Trends in Fibre-Optic Uses for Personal Healthcare and Clinical Diagnostics. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics