Skip to main content

Plasmonics-Based Fiber Optic Sensors

  • Chapter
  • First Online:

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

Since the unveiling of optical fiber technology in the field of plasmonics-based optical sensors, a lot of advancements have been witnessed. This chapter discusses a detailed mechanism of the technique of surface plasmon resonance (SPR) applied in optical fiber sensors. Some selected research works in the area of plasmonics-based fiber optic sensors reported in last 25–30 years along with future scope of work are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Zenneck, Uber die Fortpflanztmg ebener elektro-magnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie. Annals der Physik 23, 846–866 (1907)

    Article  MATH  Google Scholar 

  2. A. Sommerfeld, Propagation of waves in wireless telegraphy. Annals der Physik 28, 665–736 (1909)

    Article  MATH  Google Scholar 

  3. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  MathSciNet  Google Scholar 

  4. C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118, 640–643 (1960)

    Article  Google Scholar 

  5. E.A. Stern, R.A. Ferrell, Surface plasma oscillations of a degenerate electron gas. Phys. Rev. 120, 130–136 (1960)

    Article  MathSciNet  Google Scholar 

  6. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398–410 (1968)

    Article  Google Scholar 

  7. E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23, 2135–2136 (1968)

    Google Scholar 

  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988)

    Google Scholar 

  9. S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirsov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2, 62–70 (2002)

    Article  Google Scholar 

  10. F. Villuendas, J. Pelayo, Optical fibre device for chemical sensing based on surface plasmon excitridon. Sens. Actuators A 23, 1142–1145 (1990)

    Article  Google Scholar 

  11. L.D. Maria, M. Martinelli, G. Vegetti, Fiber-optic sensor based on surface plasmon interrogation. Sens. Actuators B 12, 221–223 (1993)

    Article  Google Scholar 

  12. R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B 12, 213–220 (1993)

    Article  Google Scholar 

  13. M. Mar, R.C. Jorgenson, S. Letellier, S.S. Yee, In-situ characterization of multilayered Langmuir-Blodgett films using a surface plasmon resonance fiber optic sensor, in Proceedings of the 15th Annual International Conference of the IEEE (1993), pp. 1551–1552

    Google Scholar 

  14. R.C. Jorgenson, S.S. Yee, Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor. Sens. Actuators A 43, 44–48 (1994)

    Article  Google Scholar 

  15. M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, K. Cammann, Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy, in The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, vol. 2 (1995), pp. 797–800

    Google Scholar 

  16. J. Homola, R. Slavik, Fibre-optic sensor based on surface plasmon resonance. Electron. Lett. 32, 480–482 (1996)

    Article  Google Scholar 

  17. A. Abdelghani, J.M. Chovelon, J.M. Krafft, N. Jaffrezic-Renault, A. Trouillet, C. Veillas, C. Ronot-Trioli, H. Gagnaire, Study of self-assembled monolayers of n-alkanethiol on a surface plasmon resonance fibre optic sensor. Thin Solid Films 284–285, 157–161 (1996)

    Article  Google Scholar 

  18. A. Abdelghani, J.M. Chovelon, N. Jaffrezic-Renault, C. Ronot-Trioli, C. Veillas, H. Gagnaire, Surface plasmon resonance fibre-optic sensor for gas detection. Sens. Actuators B 39, 407–410 (1997)

    Article  Google Scholar 

  19. R. Slavík, J. Homola, J. Ctyroký, Miniaturization of fiber optic surface plasmon resonance sensor. Sens. Actuators B 51, 311–315 (1998)

    Article  Google Scholar 

  20. E. Fontana, Chemical sensing with gold coated optical fibers. Microwave Optoelectr. Conf. 2, 415–419 (1999)

    Google Scholar 

  21. W.B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sens. Actuators A 84, 198–204 (2000)

    Article  Google Scholar 

  22. F. Meriaudeau, A. Wig, A. Passian, T. Downey, M. Buncick, T.L. Ferrell, Gold island fiber optic sensor for refractive index sensing. Sens. Actuators B 69, 51–57 (2000)

    Article  Google Scholar 

  23. A. Díez, M.V. Andrés, J.L. Cruz, In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers. Sens. Actuators B 73, 95–99 (2001)

    Article  Google Scholar 

  24. W.B. Lin, N. Jaffrezic-Renault, J.M. Chovelon, M. Lacroix, Optical fiber as a whole surface probe for chemical and biological applications. Sens. Actuators B 74, 207–211 (2001)

    Article  Google Scholar 

  25. R. Slavík, J. Homola, J. Ctyroký, E. Brynda, Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuators B 74, 106–111 (2001)

    Article  Google Scholar 

  26. W.B. Lin, M. Lacroix, J.M. Chovelon, N. Jaffrezic-Renault, H. Gagnaire, Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media. Sens. Actuators B 75, 203–209 (2001)

    Article  Google Scholar 

  27. O. Esteban, R. Alonso, C.C. Navarrete, A. Gonzalez-Cano, Surface plasmon excitation in fiber-optics sensors: a novel theoretical approach. J. Lightwave Technol. 20, 448–453 (2002)

    Article  Google Scholar 

  28. R. Slavík, J. Homola, E. Brynda, A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens. Bioelectron. 17, 591–595 (2002)

    Article  Google Scholar 

  29. F. Bardin, I. Kasik, A. Trouillet, V. Matejec, H. Gagnaire, M. Chomat, Surface plasmon resonance sensor using an optical fiber with an inverted graded-index profile. Appl. Opt. 41, 2514–2520 (2002)

    Article  Google Scholar 

  30. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, M. Clément, Surface plasmon resonance hydrogen sensor using an optical fibre. Meas. Sci. Technol. 13, 118–124 (2002)

    Article  Google Scholar 

  31. M. Piliarik, J. Homola, Z. Maníková, J. Ctyroký, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B 90, 236–242 (2003)

    Article  Google Scholar 

  32. P.S. Grant, S. Kaul, S. Chinnayelka, M.J. McShane, Fiber optic biosensors comprising nanocomposite multilayered polymer and nanoparticle ultrathin films, in Proceedings of the 25th Annual International Conference of the IEEE, vol. 4 (2003), pp. 2987–2990

    Google Scholar 

  33. M. Iga, A. Seki, K. Watanabe, Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens. Actuators B 101, 368–372 (2004)

    Article  Google Scholar 

  34. D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt. 43, 1216–1220 (2004)

    Article  Google Scholar 

  35. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber. Anal. Chim. Acta 523, 165–170 (2004)

    Article  Google Scholar 

  36. J.F. Masson, L.A. Obando, S. Beaudoin, K.S. Booksh, Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta 62, 865–870 (2004)

    Article  Google Scholar 

  37. A.K. Sharma, B.D. Gupta, Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sens. Actuators B 100, 423–431 (2004)

    Article  Google Scholar 

  38. R. Micheletto, K. Hamamoto, S. Kawai, Y. Kawakami, Modeling and test of fiber-optics fast SPR sensor for biological investigation. Sens. Actuators B 119, 283–290 (2005)

    Article  Google Scholar 

  39. W. Tsai, Y. Tsao, H. Lin, B. Sheu, Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance. Opt. Lett. 30, 2209–2211 (2005)

    Article  Google Scholar 

  40. Y.C. Kim, J.F. Masson, K.S. Booksh, Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring. Talanta 67, 908–917 (2005)

    Article  Google Scholar 

  41. Y. Kim, W. Peng, S. Banerji, K.S. Booksh, Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)

    Article  Google Scholar 

  42. S.F. Wang, M.H. Chiu, R.S. Chang, Numerical simulation of a D-type optical fiber sensor based on the Kretschmann’s configuration and heterodyne interferometry. Sens. Actuators B 114, 120–126 (2006)

    Article  Google Scholar 

  43. B.D. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators B 107, 40–46 (2005)

    Article  Google Scholar 

  44. A.K. Sharma, B.D. Gupta, On the sensitivity and signal-to-noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt. Commun. 45, 159–169 (2005)

    Article  Google Scholar 

  45. A.K. Sharma, B.D. Gupta, Fiber-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films. Nanotechnology 17, 124–131 (2006)

    Article  Google Scholar 

  46. L.K. Chau, Y.F. Lin, S.F. Cheng, T.J. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuators B 113, 100–105 (2006)

    Article  Google Scholar 

  47. J.L. Tang, S.F. Cheng, W.T. Hsu, T.Y. Chiang, L.K. Chau, Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators B 119, 105–109 (2006)

    Article  Google Scholar 

  48. S. Jette-Charbonneau, P. Berini, Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides. J. Opt. Soc. Am. A 23, 1757–1767 (2006)

    Article  Google Scholar 

  49. G. Nemova, R. Kashyap, Fiber Bragg grating assisted surface plasmon-polariton sensor. Opt. Lett. 24, 3789–3796 (2006)

    Google Scholar 

  50. G. Nemova, R. Kashyap, Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber Bragg grating. J. Lightwave Tech. 24, 3789–3796 (2006)

    Article  Google Scholar 

  51. K. Hamamoto, R. Micheletto, M. Oyama, A. Ali-Umar, S. Kawai, Y. Kawakami, An original planar multireflection system for sensing using the local surface plasmon resonance of gold nanosphere. J. Opt. A: Pure Appl. Opt. 8, 268–271 (2006)

    Article  Google Scholar 

  52. A. Hassani, M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B. 26, 1550–1557 (2009)

    Article  Google Scholar 

  53. A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14, 11616–11621 (2006)

    Article  Google Scholar 

  54. A.K. Sharma, G.J. Mohr, Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to optical sensing. New J. Phys. 10 (2008) (Art. 023039)

    Google Scholar 

  55. A.K. Sharma, R. Jha, H.S. Pattanaik, G.J. Mohr, Design considerations for surface plasmon resonance based detection of human blood group in near infrared. J. Biomed. Opt. 14 (2009) (Art. 064041)

    Google Scholar 

Download references

Acknowledgments

The author acknowledges the motivation and encouragement from the Director (NIT Delhi), colleagues, friends, and family during preparation of this chapter. The authors also thanks his former mentors and colleagues in India, Germany, and the Netherlands for their kind support in respective durations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, A.K. (2017). Plasmonics-Based Fiber Optic Sensors. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics