Skip to main content

Lossy Mode Resonance Based Fiber Optic Sensors

  • Chapter
  • First Online:
Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

In the past couple of years, lossy mode resonance (LMR) phenomena has attracted the attention of researchers with its promising benefits in the field of fiber optic sensing . LMR based sensors have become a useful tool in sensing applications ranging from physical sensing to biosensing in a short span of time. In addition to sensing, LMR phenomena can also be utilized as wavelength filters for communication purposes. LMR based sensors are able to work independently of the specific polarization of light for sensing operations. Also, unlike evanescent wave and surface plasmon resonance (SPR) based sensors, the sensitivity of these LMR sensors does not get affected by the geometrical parameters of fiber and primarily depends on the thickness of thin film material . Till date, various geometries of fiber probes such as straight, D-shaped, tapered etc., have been explored. Bending and tapering of multimode fiber based LMR sensors improve the detection accuracy without affecting their sensitivity. However, in single mode fiber based LMR sensors the side polishing and tapering of fibers improve both the detection accuracy and sensitivity. Another method to improve the sensitivity is by using two LMR supporting thin film layers of higher refractive index instead of one. This chapter describes the theory and developments made in the field of LMR based fiber optic sensors for various sensing applications. Finally, future scope of the LMR sensing technology and possible research in this emerging area are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Kersey, A. Dandridge, Applications of fiber-optic sensors. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(1), 137–143 (1990)

    Article  Google Scholar 

  2. B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)

    Article  Google Scholar 

  3. R. Bogue, Fibre optic sensors: a review of today’s applications. Sens. Rev. 31(4), 304–309 (2011)

    Article  Google Scholar 

  4. B. Lee, S. Roh, J. Park, Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009)

    Article  Google Scholar 

  5. T. Batchman, G. McWright, Mode coupling between dielectric and semiconductor planar waveguides. IEEE Trans. Microwave Theory Tech. 30(4), 628–634 (1982)

    Article  Google Scholar 

  6. M. Marciniak, J. Grzegorzewski, M. Szustakowski, Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer. Optoelectr. IEE Proc. J. 140(4), 247–252 (1993)

    Article  Google Scholar 

  7. T. Takano, J. Hamasaki, Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics. IEEE J. Quantum Electr. 8(2), 206–212 (1972)

    Article  Google Scholar 

  8. F. Yang, J.R. Sambles, Determination of the optical permittivity and thickness of absorbing films using long range modes. J. Modern Opt. 44(6), 1155–1163 (1997)

    Article  Google Scholar 

  9. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B: Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  10. A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. Sens. J. IEEE 7(8), 1118–1129 (2007)

    Article  Google Scholar 

  11. A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors. Sens. Actuators B: Chem. 125(2), 688–703 (2007)

    Article  Google Scholar 

  12. X.D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013)

    Article  Google Scholar 

  13. I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28(3), 214–242 (2008)

    Article  Google Scholar 

  14. I.D. Villar, C.R. Zamarreno, M. Hernaez, F.J. Arregui, I.R. Matias, Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. 28(1), 111–117 (2010)

    Article  Google Scholar 

  15. C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B: Chem. 146(1), 414–417 (2010)

    Article  Google Scholar 

  16. D. Kaur, V. Sharma, A. Kapoor, High sensitivity lossy mode resonance sensors. Sens. Actuators B: Chem. 198, 366–376 (2014)

    Article  Google Scholar 

  17. M. Hernaez, I.D. Villar, C.R. Zamarreno, F.J. Arregui, I.R. Matias, Optical fiber refractometers based on lossy mode resonances supported by TiO\(_2\) coatings. Appl. Opt. 49, 3980–3985 (2010)

    Article  Google Scholar 

  18. I.D. Villar, C.R. Zamarreno, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Opt. 12(9), 095503 (2010)

    Article  Google Scholar 

  19. C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B: Chem. 155(1), 290–297 (2011)

    Article  Google Scholar 

  20. R.F. Carson, T.E. Batchman, Multimode phenomena in semiconductor-clad dielectric optical waveguide structures. Appl. Opt. 29(18), 2769–2780 (1990)

    Article  Google Scholar 

  21. I.D. Villar, I.R. Matias, F.J. Arregui, M. Achaerandio, Nanodeposition of materials with complex refractive index in long-period fiber gratings. J. Lightwave Technol. 23(12), 4192–4199 (2005)

    Article  Google Scholar 

  22. E. Kretschmann, H. Reather, Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift fur Naturforschung 23, 21352136 (1968)

    Google Scholar 

  23. I.D. Villar, C.R. Zamarreno, M. Hernaez, P. Sanchez, F.J. Arregui, I.R. Matias, Generation of surface plasmon resonance and lossy mode resonance by thermal treatment of ITO thin-films. Opt. Laser Technol. 69, 1–7 (2015)

    Article  Google Scholar 

  24. J. Chilwell, I. Hodgkinson, Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A 1(7), 742–753 (1984)

    Article  Google Scholar 

  25. G.P. Agarwal, Nonlinear Fiber Optics, 3rd edn. (Academic, New York, 2001)

    Google Scholar 

  26. C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, ITO coated optical fiber refractometers based on resonances in the infrared region. Sens. J. IEEE 10(2), 365–366 (2010)

    Article  Google Scholar 

  27. I.D. Villar, M. Hernaez, C.R. Zamarreno, P. Sanchez, C. Fernandez-Valdivielso, F.J. Arregui, I.R. Matias, Design rules for lossy mode resonance based sensors. Appl. Opt. 51(19), 4298–4307 (2012)

    Article  Google Scholar 

  28. S.H. Brewer, S. Franzen, Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces, correlation of reflectivity, skin depth, and plasmon frequency with conductivity. J. Alloys Compd. 338, 73–79 (2002)

    Article  Google Scholar 

  29. I. Hamberg, A. Hjortsberg, C. Granqvist, High quality transparent heat reflectors of reactively evaporated indium tin oxide. Appl. Phys. Lett. 40(5), 362–364 (1982)

    Article  Google Scholar 

  30. S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, H. Bernitzki, Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 335, 1–5 (1998)

    Article  Google Scholar 

  31. A. Socorro, J. Corres, I.D. Villar, F.J. Arregui, I.R. Matias, Fiber-optic biosensor based on lossy mode resonances. Sens. Actuators B: Chem. 174, 263–269 (2012)

    Article  Google Scholar 

  32. P. Sanchez, C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Considerations for lossy-mode resonance-based optical fiber sensor. Sens. J. IEEE 13(4), 1167–1171 (2013)

    Article  Google Scholar 

  33. C.R. Zamarreno, P. Zubiate, M. Sagues, I.R. Matias, F.J. Arregui, Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations. Opt. Lett. 38(14), 2481–2483 (2013)

    Article  Google Scholar 

  34. C. Elosua, I. Vidondo, F.J. Arregui, C. Bariain, A. Luquin, M. Laguna, I.R. Matias, Lossy mode resonance optical fiber sensor to detect organic vapors. Sens. Actuators B: Chem. 187, 65–71 (2013)

    Article  Google Scholar 

  35. P.J. Rivero, A. Urrutia, J. Goicoechea, I.R. Matias, F.J. Arregui, A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens. Actuators B: Chem. 187, 40–44 (2013)

    Article  Google Scholar 

  36. N. Paliwal, J. John, Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO\(_2\) bilayers. Appl. Opt. 53, 3241–3246 (2014)

    Article  Google Scholar 

  37. C.R. Zamarreno, I. Ardaiz, L. Ruete, F. Munoz, I.R. Matias, F.J. Arregui, C-reactive protein aptasensor for early sepsis diagnosis by means of an optical fiber device. Sens. IEEE 2013, 1–4 (2013)

    Google Scholar 

  38. L. Razquin, C.R. Zamarreno, F. Munoz, I.R. Matias, F.J. Arregui, Thrombin detection by means of an aptamer based sensitive coating fabricated onto LMR-based optical fiber refractometer. Sens. IEEE 2012, 1–4 (2012)

    Google Scholar 

  39. N. Paliwal, J. John, Sensitivity enhancement of aluminium doped zinc oxide (AZO) coated lossy mode resonance (LMR) fiber optic sensors using additional layer of oxides. Frontiers in Optics. Optical Society of America, p. JTu3A.40 (2014)

    Google Scholar 

  40. A. Socorro, I.D. Villar, J. Corres, F.J. Arregui, I.R. Matias, Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B: Chem. 200, 53–60 (2014)

    Article  Google Scholar 

  41. N. Paliwal, J. John, Theoretical modelling of lossy mode resonance (LMR) based fiber optic temperature sensor utilizing TiO\(_2\) sensing layer. in 12th International Conference on Fiber Optics and Photonics (Optical Society of America, 2014), p. M4A.22

    Google Scholar 

  42. S.K. Srivastava, B.D. Gupta, Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor. J. Opt. Soc. Am. A 27(7), 1743–1749 (2010)

    Article  MathSciNet  Google Scholar 

  43. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, P. Lu, Bending insensitive sensors for strain and temperature measurements with bragg gratings in bragg fibers. Opt. Exp. 19(15), 13 880–13 891 (2011)

    Google Scholar 

  44. P. Zubiate, C.R. Zamarreno, I.D. Villar, I.R. Matias, F.J. Arregui, High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt. Exp. 23(6), 8045–8050 (2015)

    Article  Google Scholar 

  45. N. Paliwal, J. John, Lossy mode resonance (LMR) based fiber optic sensors: a review. Sens. J. IEEE 15(10), 5361–5371 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Paliwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paliwal, N., John, J. (2017). Lossy Mode Resonance Based Fiber Optic Sensors. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics