Skip to main content

Long Period Grating Based Fibre Optic Chemical Sensors

  • Chapter
  • First Online:
Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

The principle of operation of optical fibre long period grating (LPG) sensors is described. In particular, the chapter explores the use of LPGs as a chemical sensing platform, discussing the fabrication of LPGs and the various approaches that have been employed to modify the cladding of the LPG and thus sensitise the LPG. Examples of the practical application of LPG chemical sensors are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.W. James, R.P. Tatam, Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, R49–R61 (2003)

    Article  Google Scholar 

  2. S. James, R. Tatam, Fibre optic sensors with nano-structured coatings. J. Opt. A: Pure Appl. Opt. 8, S430–S444 (2006)

    Article  Google Scholar 

  3. S.C. Cheung, S.M. Topliss, S.W. James, R.P. Tatam, Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings. J. Opt. Soc. America B. 25(6), 897–902 (2008)

    Article  Google Scholar 

  4. S.W. James, C.S. Cheung, R.P. Tatam, Experimental observations on the response of 1st and 2nd order fibre optic long period grating coupling bands to the deposition of nanostructured coatings. Opt. Express 15, 13096–13107 (2007)

    Article  Google Scholar 

  5. I. Del Villar, M. Achaerandio, I.R. Matias, F.J. Arregui, Deposition of overlays by electrostatic self-assembly in long-period fiber gratings. Opt. Lett. 30, 720–722 (2005)

    Article  Google Scholar 

  6. T. Wang, S. Korposh, S. James, R. Tatam, S.-W. Lee, Optical fibre long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors. Sens. Actuators B: Chem. 185, 117–124 (2013)

    Article  Google Scholar 

  7. I. Del Villar, I.R. Matias, F.J. Arregui, M. Achaerandio, Nanodeposition of materials with complex refractive index in long-period fiber gratings. J. Lightw. Technol. 23, 4192–4199 (2005)

    Article  Google Scholar 

  8. A. Cusano, A. Ladicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity. Opt. Lett. 30, 2536–2538 (2005)

    Article  Google Scholar 

  9. I. Del Villar, Theoretical analysis and fabrication of nanostrctures with electrpstatic slef-assembly monolayer porcess. PhD Thesis, Universida Publica de Navarra (2006)

    Google Scholar 

  10. Z.Y. Wang, J.R. Helfin, R.H. Stoeln, S. Ramachandran, Analysis of the optical response of long period fibre gratings to nm-thick thin-film coatings. Opt. Express 13, 2808–2813 (2005)

    Article  Google Scholar 

  11. I. Del Villar, I.R. Matias, F.J. Arregui, Influence on cladding mode distribution of overlay deposition on long-period fiber gratings. J. Opt. Soc. Am. A: 23, 651–658 (2006)

    Article  Google Scholar 

  12. V. Bhatia, A.M. Vengsarkar, Optical fiber long-period grating sensors. Opt. Lett. 21, 692–694 (1996)

    Article  Google Scholar 

  13. J. Blows, D.Y. Tang, Gratings written with tripled output of Q-switched Nd:YAG laser. Electron. Lett. 36, 1837–1839 (2000)

    Article  Google Scholar 

  14. D.D. Davis, T.K. Gaylord, E.N. Glytsis, S.G. Kosinski, S.C. Mettler, A.M. Vengsarkar, Long-period fiber grating fabrication with focused CO2 laser beams. Electron. Lett. 34, 302–303 (1998)

    Article  Google Scholar 

  15. X. Lan, Q. Han, T. Wei, J. Huang, H. Xiao, Turn-aroundpoint long-period fiber gratings fabricated by CO2 laser pointby- point irradiations. IEEE Photon. Technol. Lett. 23, 1664–1666 (2011)

    Article  Google Scholar 

  16. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. Kazansky, K. Hirao, Fabrication of long-period fiber gratings by focused irradiation of infra-red femtosecond laser pulses. Opt. Lett. 24, 646–648 (1999)

    Article  Google Scholar 

  17. M. Fujumaki, Y. Ohki, J.L. Brebner, S. Roorda, Fabrication of long-period optical fiber gratings by use of ion implantation. Opt. Lett. 25, 88–90 (2000)

    Article  Google Scholar 

  18. S. Savin, M.J.F. Digonnet, G.S. Kino, H.J. Shaw, Tunable mechanically induced long-period fiber gratings. Opt. Lett. 25, 710–712 (2000)

    Article  Google Scholar 

  19. G. Kakarantzas, T.E. Dimmick, T.A. Birks, R. Le Roux, P.S.J. Russell, Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers. Opt. Lett. 26, 1137–1139 (2001)

    Article  Google Scholar 

  20. G. Rego, O. Okhotnikov, E. Dianov, V. Sulimov, High temperature stability of long-period fiber gratings using an electric arc. J. Lightw. Technol. 29, 1137–1139 (2001)

    Google Scholar 

  21. G.M. Rego, P.V.S. Marques, J.L. Santos, H.M. Salgado, Arc-Induced long-period gratings. Fiber Integrat. Opt. 24, 245–259 (2005)

    Article  Google Scholar 

  22. Y. Wang, Review of long period gratings written by CO2 laser. J. Appl. Phys. 108, 081101 (2010)

    Article  Google Scholar 

  23. L. Zhang, W. Zhang, I. Bennion, In-fiber grating optic sensors, in Fiber Optic Sensors, ed. by S. Yin, P.B. Ruffin, F.T.S. Yu, 2nd ed. (CRC Press, 2008), pp. 109–162

    Google Scholar 

  24. R.Y.N. Wong, E. Chehura, S.E. Staines, S.W. James, R.P. Tatam, Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser. Appl. Opt. 53(21), 4669–4674 (2014)

    Article  Google Scholar 

  25. J. Hromadka, R. Correia, S. Korposh, Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser via phase mask, in Proceedings of the SPIE (2016), in press

    Google Scholar 

  26. I. Del Villar, M. Achaerandio, I.R. Matias, F.J. Arregui, Deposition of overlays by electrostatic self assembly in long-period fibre gratings. Opt. Lett. 30, 720–722 (2005)

    Article  Google Scholar 

  27. I. Del Villar, I.R. Matias, F.J. Arregui, Influence on cladding mode distribution of overlay deposition on long period fiber gratings. J. Opt. Soc. Am. A: 23, 651–658 (2006)

    Article  Google Scholar 

  28. S.C. Cheung, S.M. Topliss, S.W. James, R.P. Tatam, Response of fibre optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings. J. Opt. Soc. Am. B. 25, 897–902 (2008)

    Article  Google Scholar 

  29. J.M. Corres, I.R. Matias, I. del Villar, F.J. Arregui, Design of pH sensors in long-period fiber gratings using polymeric nanocoatings. IEEE Sens. J. 7, 455–463 (2007)

    Article  Google Scholar 

  30. J. Keith, L.C. Hess, W.U. Spendel, J.A. Cox, G.E. Pacey, The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption. Tatanta 70, 818–822 (2006)

    Google Scholar 

  31. S. Korposh, T. Wang, S. James, R. Tatam, S.-W. Lee, Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating. Sens. Actuators B: Chem. 173, 300–309 (2012)

    Article  Google Scholar 

  32. S.-W. Lee, N. Takahara, S. Korposh, D.-H. Yang, K. Toko, T. Kunitake, Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors. Anal. Chem. 82, 2228–2236 (2010)

    Article  Google Scholar 

  33. B. Sellergren, A.J. Hall, Molecularly Imprinted Polymers. Man-made Mimics of Antibodies and Their Applications in Analytical Chemistry, ed. by B. Sellegren, in Chapter 2 “Fundamental Aspects on the Synthesis and Characterization of Imprinted Network Polymers (Elsevier Science B.V., Amsterdam, 2003), pp. 21–57

    Google Scholar 

  34. S.-W. Lee, S. Korposh, R. Selyanchyn, T. Kunitake, Fundamentals and perspectives of molecular imprinting in sensor applications”, in: Handbook of Molecular Imprinting: Advanced Sensor Applications, ed. by S.-W. Lee, T. Kunitake. (Pan Stanford Publishing Pte Ltd), ISBN: 9789814316651, 2012

    Google Scholar 

  35. A. Urrutia, J. Goicoechea, A.L. Ricchiuti, D. Barrera, S. Sales, F.J. Arregui, Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Act. B. 227, 135–141 (2016)

    Article  Google Scholar 

  36. M.E. Swartz, I.S. Krull, Analytical Method Development and Validation (Marcel Dekker Inc, NY USA, 1997)

    Google Scholar 

  37. G. Rafael, C. Possetti, R.C., Kamikawachi, M. Muller, J.L. Fabris, Metrological evaluation of optical fiber grating-based sensors: an approach towards the standardization. J. Lightw. Technol. (OFS-21). 2167500 (2011). doi:10.1109/JLT.2011.2167500

  38. T. Wang, S. Korposh, R. Wong, S. James, R. Tatam, S.-W. Lee, A novel ammonia gas sensing using a nanoassembled polyelectrolyte thin film on fiber optic long period gratings. Chem. Lett. 41(10), 1297–1299 (2012)

    Article  Google Scholar 

  39. T. Wang, W. Yasukochi, S. Korposh, S.W. James, R.P. Tatam, S.-W. Lee, A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas. Sens. Actuators B: Chem. (2016), in press

    Google Scholar 

  40. C.L. Sprague, A.A. Eelfarra, Detection of carboxylic acids and inhibition of hippuric acid formation in rats treated with 3-butene-1,2-diol, a major metabolite of 1,3-butadiene. Drug Metab. Dispos. 31, 986–992 (2003)

    Article  Google Scholar 

  41. N. Penner, R. Ramanathan, J. Zgoda-Pols, S. Chowdhury, Quantitative determination of hippuric and benzoic acids in urine by LC–MS/MS using surrogate standards. J. Pharmaceut. Biomed. Anal. 52, 534–543 (2010)

    Article  Google Scholar 

  42. J.D. Wulfkuhle, L.A. Liotta, E.F. Petricoin, Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003)

    Article  Google Scholar 

  43. S. Korposh, F. Davis, S.W. James, T. Wang, S.-W. Lee, S. Higson, R.P. Tatam, Detection of volatile organic compounds using an optical fibre long period grating with a calixarene anchored mesoporous thin film. Proc. SPIE 8794, 87941I(4) (2013)

    Google Scholar 

  44. A.K. Hassan, A.V. Nabok, A.K. Ray, A. Lucke, K. Smith, C.J.M. Stirling, F. Davis, Thin films of calix-4-resorcinarene deposited by spin coating and Langmuir-Blodgett techniques: determination of film parameters by surface plasmon resonance. Mater. Sci. Eng., C 8–9, 251–255 (1999)

    Article  Google Scholar 

  45. S. Korposh, I. Chianella, A. Guerreiro, S. Caygill, S.A. Piletsky, S.W. James, R.P. Tatam, Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 139, 2229–2236 (2014)

    Article  Google Scholar 

  46. S. Korposh, R. Selyanchyn, S.W. James, R.P. Tatam, S.-W. Lee, Identification and quality assessment of beverages using a long period grating fibre-optic sensor modified with a mesoporous thin film. Sens. Bio-Sens. Res. 1, 26–33 (2014)

    Article  Google Scholar 

  47. L. Marques, F.U. Hernandez, S.W. James, S.P. Morgan, M. Clark, R.P. Tatam, S. Korposh, Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 75, 222–231 (2015)

    Google Scholar 

  48. R. Falate, K. Nike, P. Ramos da Costa Neto, E. Cação Jr., M. Muller, H.J. Kalinowski, J.L., Fabris, Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor. Química Nova 30(7), 1677–1680 (2007)

    Google Scholar 

  49. K. Grattan, B. Meggitt, Chemical and Environmental Sensing (Kluwer Acad Publisher, Boston, 1999)

    Google Scholar 

  50. S.M. Topliss, S.W. James, F. Davis, S.P.J. Higson, R.P. Tatam, Optical fibre long period grating based selective vapour sensing of volatile organic compounds. Sens. Actuators, B 143(2), 629–634 (2010)

    Article  Google Scholar 

  51. S. Korposh, F. Davis, S.W. James, T. Wang, S.-W. Lee, S. Higson, R.P. Tatam, Detection of volatile organic compounds using an optical fibre long period grating with a calixarene anchored mesoporous thin film. Proc. SPIE 8794, 87941I

    Google Scholar 

  52. S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. James, R. Tatam, Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water. Mater. Chem. Phys. 133, 784–792 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Korposh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korposh, S., Lee, SW., James, S. (2017). Long Period Grating Based Fibre Optic Chemical Sensors. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics