Skip to main content

Brillouin Distributed Temperature Sensor Using Optical Time Domain Reflectometry Techniques

  • Chapter
  • First Online:
  • 2971 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

This paper presents the performance improvement of Brillouin distributed temperature sensor (BDTS) using deconvolution algorithm. We have analysed three different OTDR techniques in terms of spatial resolution improvement using Fourier regularized deconvolution (FourRD) algorithm. The effects of coherent Rayleigh noise (CRN) on temperature and spatial resolution of the above system are being investigated. In this paper, using a light source of power 10 mW and 400 ns pulse widths; a spatial resolution of 25 and 20 m is observed for a pseudorandom coded BOTDR in the presence and absence of CRN respectively. Similarly, in case of conventional BOTDR and coherent BOTDR system in the presence of CRN, the spatial resolutions observed are 40 and 35 m respectively. Numerical simulation results indicate that the pseudorandom coded BOTDR is a better candidate for design of BDTS in terms of spatial resolution as compared to the other two schemes as discussed above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Nikles, F. Ravet, Distributed fibre sensors: depth and sensitivity. Nat. Photonics 4, 431–432 (2010)

    Article  Google Scholar 

  2. S.Z. Yan, L.S. Chyan, Performance enhancement of BOTDR fibre optic sensor for oil and gas pipeline monitoring. Opt. Fibre Technol. 16, 100–109 (2010)

    Article  Google Scholar 

  3. J.M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, New York, USA, 2002)

    Google Scholar 

  4. B. Lee, Review of the present status of optical fibre sensors. Opt. Fibre Technol. 9, 57–79 (2003)

    Article  Google Scholar 

  5. J.P. Dakin, D.J. Pratt, G.W. Bibby, J.N. Ross, Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 21, 569–570 (1985)

    Article  Google Scholar 

  6. T. Horiguchi, T. Kurashima, M. Tateda, Tensile strain dependence of Brillouin frequency shift in silica optical fibres. IEEE Photonics Technol. Lett. 1, 107–108 (1989)

    Article  Google Scholar 

  7. D. Culverhouse, F. Farahi, C.N. Pannell, D.A. Jackson, Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors. Electron. Lett. 25, 913–915 (1989)

    Article  Google Scholar 

  8. Y. Koyamada, M. Imahama, K. Kubota, K. Hogari, Fibre-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightw. Technol. 27, 1142–1146 (2009)

    Article  Google Scholar 

  9. R. Feced, M. Farhadiroushan, V.A. Handerek, A.J. Rogers, Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique. IEE Proc. Optoelectronics 144, 183–189 (1997)

    Article  Google Scholar 

  10. M.A. Davis, A.D. Kersey, Simultaneous measurement of temperature and strain using fibre Bragg gratings and Brillouin scattering. IEE Proc. Optoelectron. 144, 151–155 (1997)

    Article  Google Scholar 

  11. H. Liu, S. Zhuang, Z. Zhang, C. Feng, The optimisation of the spatial resolution of a 30-km distributed optical fibre temperature sensor. in Proceedings of the Advanced Sensor Systems and Applications II, Beijing, China, SPIE 5634, November 2004, pp. 225–231

    Google Scholar 

  12. M.A. Soto, P.K. Sahu, G. Bolognini, F.D. Pasquale, Brillouin based distributed temperature sensor employing pulse coding. IEEE Sens. J. 8, 225–226 (2008)

    Google Scholar 

  13. G. Bolognini, J. Park, M.A. Soto, N. Park, F. Di Pasquale, Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Meas. Sci. Technol. 18, 3211–3218 (2007)

    Article  Google Scholar 

  14. Y. Koyamada, Y. Sakairi, N. Takeuchi, S. Adachi, Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry. IEEE Photonics Technol. Lett. 19, 1910–1912 (2007)

    Article  Google Scholar 

  15. M.C. Farries, M.E. Fermann, R.I. Laming, S.B. Poole, D.N. Payne, Distributed temperature sensor using Nd3 + doped fibre. Electron. Lett. 22, 418–419 (1986)

    Article  Google Scholar 

  16. J.P. King, D.F. Smith, K. Richards, P. Timson, R.E. Epworth, S. Wright, Development of a coherent OTDR instrument. J. Lightw. Technol. LT-5, 616–624 (1987)

    Google Scholar 

  17. A.S. Sudbo, An optical time-domain reflectometer with low-power InGaAsP diode lasers. J. Lightw. Technol. LT-1, 616–618 (1983)

    Google Scholar 

  18. P.C. Wait, T.P. Newson, Landau Placzek ratio applied to distributed fibre sensing. Optics Commun. 122, 141–146 (1996)

    Article  Google Scholar 

  19. K. De Souza, T.P. Newson, Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical pre-amplification. Meas. Sci. Technol. 12, 952–957 (2001)

    Google Scholar 

  20. M.N. Alahbabi, Distributed optical fibre sensors based on the coherent detection of spontaneous Brillouin scattering. PhD Thesis, University of Southampton, Southampton, U.K. (2005)

    Google Scholar 

  21. J. Ahamed, A. Khan, M. Ahmed, Investigation of Modulators in OTDM system. Int. J. Comput. Appl. 90, 16–19 (2014)

    Google Scholar 

  22. M. Nakazawa, Rayleigh backscattering theory for single-mode optical fibers. J. Opt. Soc. America 73, 1175–1180 (1983)

    Article  Google Scholar 

  23. K. De Souza, Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering’. Meas. Sci. Technol. 17, 1065–1069 (2006)

    Article  Google Scholar 

  24. T. Chang, D.Y. Li, T.E. Koscica, H.-L. Cui, Q. Sui, L. Jia, Fibre optic distributed temperature and strain sensing system based on Brillouin light scattering. Appl. Opt. 47, 6202–6206 (2008)

    Google Scholar 

  25. H.S. Pradhan, P.K. Sahu, High-performance Brillouin distributed temperature sensor using Fourier wavelet regularised deconvolution algorithm. IET Optoelectron. 7, 1–7 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pradhan, H.S., Sahu, P.K., Ghosh, D., Mahapatra, S. (2017). Brillouin Distributed Temperature Sensor Using Optical Time Domain Reflectometry Techniques. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics