Skip to main content

Fiber Optic Sensors Based on Nano-Films

  • Chapter
  • First Online:
Book cover Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

The combination of fiber optics with sensitive nano-films offers great potential for the realization of novel sensing concepts. Miniatured optical fiber sensors with thin films as sensitive elements could enable new fields of optical fiber sensor applications. Thin films work as sensitive elements and transducer to get response and feedback from environments, while optical fibers are employed to work as signal carrier. In this chapter fiber optic sensors based on nano-films are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Huang, M. LeBlanc, M.M. Ohn, R.M. Measures, Bragg intragrating structural sensing. Appl. Opt. 34(22), 5003–5009 (1995)

    Article  Google Scholar 

  2. H. Naruse, M. Tateda, H. Ohno, A. Shimada, Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors. Appl. Opt. 41(34), 7212–7217 (2002)

    Article  Google Scholar 

  3. J. Morita, T. Yoshimura, Analytical characteristics of stimulated Raman scattering in a multimode fiber obtained with an optical time-domain reflectometer. Appl. Opt. 34(27), 6136–6143 (1995)

    Article  Google Scholar 

  4. R. Chow, N. Tsujimoto, Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system. Appl. Opt. 35(25), 5095–5101 (1996)

    Google Scholar 

  5. O.D. Volpyan, P.P. Yakovlev, B.B. Meshkov, YuA Obod, Optical properties of Ta2O5 films obtained by reactive magnetron sputtering. J. Opt. Technol. 70(9), 669–672 (2003)

    Article  Google Scholar 

  6. P.L.G. Jardim, A.F. Michels, F. Horowitz, Optical monitoring for power law fluids during spin coating. Opt. Express 20(3), 3166–3175 (2012)

    Article  Google Scholar 

  7. T.J. Chen, Y.C. Chiou, R.T. Lee, Grinding characteristics of diamond film using composite electro-plating in-process sharpening method. Int. J. Mach. Tools Manuf 49(6), 470–477 (2009)

    Article  Google Scholar 

  8. H. Qiu, S. Gao, P. Chen, Z. Li, X. Liu, C. Z, X. Yuanyuan, S. Jiang, C. Yang, Y. Huo, W. Yue, Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Opt. Commun. 366, 275–281 (2016)

    Article  Google Scholar 

  9. Q. Rong, X. Qiao, D. Yanying, H. Sun, D. Feng, R. Wang, H. Manli, Z. Feng, In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror. Opt. Lasers Eng. 57, 53–57 (2014)

    Article  Google Scholar 

  10. C. Caucheteur, P. Mégret, T. Ernst, D.N. Nikogosyan, Polarization properties of fibre Bragg gratings inscribed by high-intensity femtosecond 264 nm pulses. Opt. Commun. 271(2), 303–308 (2007)

    Article  Google Scholar 

  11. P.E. Dyer, R.J. Farley, R. Giedl, Analysis of grating formation with excimer laser irradiated phase masks. Opt. Commun. 115(3–4), 327–334 (1995)

    Article  Google Scholar 

  12. D.J. Wales, R.M. Parker, J.C. Gates, M.C. Grossel, P.G.R. Smith, An investigation into relative humidity measurement using an aluminosilicate sol–gel thin film as the active layer in an integrated optical Bragg grating refractometer. Sens. Actuators B: Chem. 188, 857–866 (2013)

    Article  Google Scholar 

  13. J. Villatoro, J. Zubia, New perspectives in photonic crystal fibre sensors. Opt. Laser Technol. 78(Part A) 67–75 (2016)

    Google Scholar 

  14. M. Tian, L. Ping, L. Chen, D. Liu, M. Yang, J. Zhang, Femtosecond laser fabricated in-line micro multicavity fiber FP interferometers sensor. Opt. Commun. 316, 80–851 (2014)

    Article  Google Scholar 

  15. H.J. Kbashi, Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol. 28(4), 308–312 (2012)

    Article  Google Scholar 

  16. Y. Han, Z. Chen, D. Cao, Y. Jianhui, H. Li, X. He, J. Zhang, Y. Luo, L. Huihui, J. Tang, H. Huang, Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation. Sens. Actuators B: Chem. 196, 663–669 (2014)

    Article  Google Scholar 

  17. M. Jedrzejewska-Szczerska, P. Wierzba, A. Abou Chaaya, M. Bechelany, P. Miele, R. Viter, A. Mazikowski, K. Karpienko, M. Wróbel, ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer. Sens. Actuators A 221, 88–94 (2015)

    Article  Google Scholar 

  18. J. Zhou, H. Wang, S. Zhao, N. Zhou, L. Li, W. Huang, D. Wang, C. Zhang, In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing. Mater. Sci. Eng., C 60, 437–445 (2016)

    Article  Google Scholar 

  19. S. Chen, W. Ma, H. Xiang, Y. Cheng, S. Yang, W. Weng, M. Zhu, Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J. Power Sources 319, 271–280 (2016)

    Article  Google Scholar 

  20. M. Tabib-Azar, B. Sutapun, R. Petrick, A. Kazemi, Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sens. Actuators, B 56, 158–163 (1999)

    Article  Google Scholar 

  21. M.A. Butler, Micromirror optical-fiber hydrogen sensor. Sens. Actuators, B 22, 155–163 (1994)

    Article  Google Scholar 

  22. J.Z. Ou, M.H. Yaacob, J.L. Campbell, M. Breedon, K. Kalantar-zadeh, W. Wlodarski, H2 sensing performance of optical fiber coated with nano-platelet WO3 film. Sens. Actuators, B 166–167, 1–6 (2012)

    Article  Google Scholar 

  23. M. Wang, M.H. Yang, J. Chen, J.X. Dai, M.W. Yang, D.N. Wang, Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing material for hydrogen sensing. Opt. Lett. 37(11), 1940–1942 (2012)

    Article  Google Scholar 

  24. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 16(23), 18599–18604 (2008)

    Article  Google Scholar 

  25. B. Sutapun, M. Tabib-Azar, A. Kazemi, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens. Actuators, B 60, 27–34 (1999)

    Article  Google Scholar 

  26. J.X. Dai, M.H. Yang, Z. Yang, Z. Li, Y. Wang, G.P. Wang, Y. Zhang, Z. Zhuang, Enhanced sensitivity of fiber Bragg grating hydrogen sensor using filexible substrate. Sens. Actuators, B 196, 604–609 (2014)

    Article  Google Scholar 

  27. Y. Chen, J.F. Li, Y. Yang, M. Chen, J. Li, H.Y. Luo, Numerical modeling and design of mid-infrared FBG with high reflectivity. Optik 124, 2565–2568 (2013)

    Article  Google Scholar 

  28. M. Buric, T. Chen, M. Maklad, P.R. Swinehart, K.P. Chen, Multiplexable low-temperature fiber Bragg grating hydrogen sensors. IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009)

    Article  Google Scholar 

  29. L. Alwis, T. Sun, K.T.V. Grattan, Design and performance evaluation of polyvinyl alcohol/polyimide coated optical fibre grating-based humidity sensors. Rev. Sci. Instrum. 84 (2013)

    Google Scholar 

  30. X. Dong, T. Li, Y. Liu, Y. Li, C.L. Zhao, C.C. Chan, Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing. J. Biomed. Opt. 16, 077001–077004 (2011)

    Article  Google Scholar 

  31. A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, R.C. Aiyer, Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B: Chem. 129, 106–112 (2008)

    Article  Google Scholar 

  32. S. Akita, H. Sasaki, K. Watanabe, A. Seki, A humidity sensor based on a hetero-core optical fiber. Sens. Actuators B: Chem. 147, 385–391 (2010)

    Article  Google Scholar 

  33. F. Arregui, Y. Liu, I.R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sens. Actuators B: Chem. 59, 54–59 (1999)

    Article  Google Scholar 

  34. J.J. Steele, Nanostructured thin films for humidity sensing. PhD thesis of Alberta University, Canada (2008)

    Google Scholar 

  35. P.M. Faia, C.S. Furtado, Effect of composition on electrical response to humidity of TiO2: ZnO sensors investigated by impedance spectroscopy. Sens. Actuators B: Chem. 181, 720–729 (2013)

    Article  Google Scholar 

  36. B.M. Kulwicki, Ceramic sensors and transducers. J. Phys. Chem. Solids 45, 1015–1031 (1984)

    Article  Google Scholar 

  37. B. Fubini, V. Bolis, M. Bailes, F.S. Stone, The reactivity of oxides with water vapor. Solid State Ionics 32–33, 258–272 (1989)

    Article  Google Scholar 

  38. J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3362–3368 (1968)

    Article  Google Scholar 

  39. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, London, 1982)

    Google Scholar 

  40. W.M. Sears, The effect of oxygen stoichiometry on the humidity sensing characteristics of bismuth iron molybdate. Sens. Actuators B 67, 161–172 (2000)

    Article  Google Scholar 

  41. P.M. Faia, A.R. Ferreira, C.S. Furtado, AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensors. Sens. Actuators B 107, 353–359 (2005)

    Article  Google Scholar 

  42. E.V. Astrova a, V.A. Tolmachev, Effective refractive index and composition of oxidized porous silicon films. Mater. Sci. Eng., B 69–70, 142–148 (2000)

    Article  Google Scholar 

  43. C. Pickering, M.I.J. Beale, D.J. Robbins, Optical properties of porous silicon films. Thin Solid Films 125, 157–163 (1985)

    Article  Google Scholar 

  44. Z.L. Ran, Y.J. Rao, W.J. Liu, X. Liao, K.S. Chiang, Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 16, 2252–2263 (2008)

    Article  Google Scholar 

  45. G.L. Zhang, M.H. Yang, Y.T. Dai, Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing. Chin. Opt. Lett. S11202(3), 2014

    Google Scholar 

  46. K. Robbie, M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A: Vac. Surf. Films 15, 1460–1465 (1997)

    Article  Google Scholar 

  47. Z.L. Ran, Y.J. Rao, H.Y. Deng, X. Liao, Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining. Opt. Lett. 32, 3071–3073 (2007)

    Article  Google Scholar 

  48. T. Wei, Y.K. Han, H.L. Tsai, H. Xiao, Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 33, 536–538 (2008)

    Article  Google Scholar 

  49. M.H. David, V.P. Minkovich, J. Villatoro, High-temperature sensing with tapers made of microstructured optical fiber. Photonics Technol. Lett. 18, 511–513 (2006)

    Article  Google Scholar 

  50. J.L. Kou, J. Feng, L. Ye, F. Xu, Y.Q. Lu, Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 18, 14245–14250 (2010)

    Article  Google Scholar 

  51. H.Y. Choi, K.S. Park, S.J. Park, U.C. Paek, B.H. Lee, E.S. Choi, Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 33(21), 2455–2457 (2008)

    Article  Google Scholar 

  52. H.Y. Choi, G. Mudhana, K.S. Park, U.C. Paek, B.H. Lee, Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 18(1), 141–149 (2010)

    Article  Google Scholar 

  53. X. Lai-Cai, M. Deng, D.-W. Duan et al., High-temperature measurement by using a PCF-based Fabry-Perot interferometer. Opt. Lasers Eng. 50, 1391–1396 (2012)

    Article  Google Scholar 

  54. D.W. Duan, Y.J. Rao, W.P. Wen, J. Yao, D. Wu, L.C. Xu, T. Zhu, In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing. Electron. Lett. 47, 401–402 (2011)

    Article  Google Scholar 

  55. Z.Y. Huang, Y.Z. Zhu, X.P. Chen, A.B. Wang, Intrinsic Fabry-Perot sensor for temperature and strain measurements. Photonics Technol Lett. 17, 2403–2405 (2005)

    Article  Google Scholar 

  56. Y.-J. Rao, M. Deng, T. Zhu, H. Li, In-line fabry-perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications. J. Lightw. Technol. 27(19), 4360–4365 (2009)

    Article  Google Scholar 

  57. J. Wang, E.M. Lally, B. Dong, J. Gong, A. Wang, Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip. IEEE Sens. J. 11(12), 3406–3408 (2011)

    Article  Google Scholar 

  58. J. Wang, E.M. Lally, X. Wang, J. Gong, G. Pickrell, A. Wang, ZrO2 thin-film-based sapphire fiber temperature sensor. Appl. Opt. 51(12), 2129–2134 (2012)

    Article  Google Scholar 

  59. D. Lee, M. Yang, C. Huang, J. Dai, Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry-Perot cavity. IEEE Photonics Technol. Lett. 26(21), 2107–2110 (2014)

    Google Scholar 

  60. G.N. Merberg, J.A. Harrington, Optical and mechanical properties of single-crystal sapphire optical fibers. Appl. Opt. 32(18), 3201–3209 (1993)

    Article  Google Scholar 

  61. D. Lee, Z. Tian, C. Huang, M. Yang, High temperature sensor based on dielectric multilayer Fabry-Perot interferometry on Sapphire fiber tip, in OFS 2014 23 rd International Conference on Optical Fiber Sensors, International Society for Optics and Photonics, vol. 9157, 9157D6-1 (2014)

    Google Scholar 

  62. Y. Zhu, A. Wang, Surface-mount sapphire interferometric temperature sensor. Appl. Opt. 45, 6071–6076 (2006)

    Article  Google Scholar 

  63. P.V. Patil, D.M. Bendale, R.K. Puri et al., Refractive index and adhesion of Al2O3 thin films obtained from different processes—a comparative study. Thin Solid Films 288, 120–124 (1996)

    Article  Google Scholar 

  64. C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, M. Tuomminen, Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl. Phys. Lett. 78, 2357–2359 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, M., Peng, J., Wang, G., Dai, J. (2017). Fiber Optic Sensors Based on Nano-Films. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics