Skip to main content

Bridging the Gap Between Students and Laboratory Experiments

  • Chapter
  • First Online:
Automation, Communication and Cybernetics in Science and Engineering 2015/2016

Abstract

After having finished studies, graduates need to apply their knowledge to a new environment. In order to professionally prepare students for new situations, virtual reality (VR) simulators can be utilized. During our research, such a simulator is applied in order to enable the visit of remote laboratories, which are designed through advanced computer graphics in order to create simulated representations of real world environments. That way, it is our aim to facilitate the access to practical engineering laboratories. Our goal is to enable a secure visit of elusive or dangerous places for students of technical studies. The first step towards the virtualization of engineering environments, e.g. a nuclear power plant, consists in the development of demonstrators. In the present paper, we describe the elaboration of an industry relevant demonstrator for the advanced teaching of engineering students. Within our approach, we use a virtual reality simulator that is called the “Virtual Theatre”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kerres, Mediendidaktik: Konzeption und Entwicklung mediengestützer Lernangebote. Oldenbourg, München, 2012

    Google Scholar 

  2. J. Handke, A.M. Schäfer, E-Learning, E-Teaching and E-Assessment in der Hochschullehre: Eine Anleitung. Oldenbourg, München, 2012

    Google Scholar 

  3. R.J. Craig, J.H. Amernic, Powerpoint presentation technology and the dynamics of teaching. Innovative Higher Education 31 (3), 2006, pp. 147–160

    Google Scholar 

  4. A. Szabo, N. Hastings, Using it in the undergraduate classroom: Should we replace the blackboard with powerpoint? Computer and Education 35, 2000

    Google Scholar 

  5. T. Köhler, N. Kahnwald, M. Reitmaier, Lehren und Lernen mit Multimedia und Internet. In: Medienpsychologie, ed. by B. Batinic, M. Appel, Springer, Heidelberg, 2008, pp. 477–501

    Google Scholar 

  6. R.A. Bartsch, K.M. Cobern, Effectiveness of powerpoint presentation in lectures. Computer and Education 41, 2003, pp. 77–86

    Google Scholar 

  7. T. Creed, Powerpoint, no! cyberspace, yes. The Nat. Teach. & Learn. F. 6 (4), 1997

    Google Scholar 

  8. D. Cyphert, The problems of powerpoint: Visual aid or visual rhetoric? Business Communication Quarterly 67, 2004, pp. 80–83

    Google Scholar 

  9. P. Norvig, Powerpoint: Shot with its own bullets. The Lancet 362, 2003, pp. 343–344

    Google Scholar 

  10. T. Simons, Does powerpoint make you stupid? Presentations 18 (3), 2005. http://global.factiva.com/

  11. A.M. Jones, The use and abuse of powerpoint in teaching and learning in the life sciences: A personal view. BEE-j 2, 2003. http://www.bioscience.heacademy.ac.uk/journal/vol2/beej-2-3.pdf

  12. E. André, Was ist eigentlich multimodale Mensch-Technik Interaktion? Anpassungen an den Faktor Mensch. Forschung und Lehre 21 (01/2014), 2014

    Google Scholar 

  13. M. Steffen, D. May, J. Deuse, The industrial engineering laboratory: Problem based learning in industrial eng. education at tu dortmund university. EDUCON, 2012

    Google Scholar 

  14. J.H. Murray, Hamlet on the Holodeck: The Future of Narrative in Cyberspace. MIT Press, Cambridge (Mass.), 1997

    Google Scholar 

  15. K. Schuster, D. Ewert, D. Johansson, U. Bach, R. Vossen, S. Jeschke, Verbesserung der Lernerfahrung durch die Integration des Virtual Theatres in die Ingenieurausbildung. In: TeachING-LearnING.EU discussions, ed. by A.E. Tekkaya, S. Jeschke, M. Petermann, D. May, N. Friese, C. Ernst, S. Lenz, K. Müller, K. Schuster, TeachING-LearnING.EU, Aachen, 2013

    Google Scholar 

  16. M. Hoffmann, K. Schuster, D. Schilberg, S. Jeschke, Next-generation teaching and learning using the virtual theatre. 4th Global Conference on Experiential Learning in Virtual Worlds, Prague, Czech Republic, 2014

    Google Scholar 

  17. Wolf, M. J. P, B. Perron, The video game theory reader. Routledge, NY, London, 2003

    Google Scholar 

  18. C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, Surround-screen projection-based virtual reality. the design and implementation of the cave. SIGGRAPH’93 Proceedings of the 20th annual conference on Computer graphics and interactive techniques. ACM - New York, 1993, pp. 135–142. doi:10.1145/166117.166134

  19. N. Max, Siggraph’84 call for omnimax films. Computer Graphics 16 (4), 1982, pp. 208–214

    Google Scholar 

  20. C. Codella, R. Jalili, L. Koved, B. Lewis, D.T. Ling, J.S. Lipscomb, D. Rabenhorst, C.P. Wang, A. Norton, P. Sweeny, G. Turk, Interactive simulation in a multi-person virtual world. ACM - Human Fact. in Comp. Syst. (CHI 1992 Conf.), 1992, pp. 329–334

    Google Scholar 

  21. M. Deering, High resolution virtual reality. Com. Graph. 26 (2), 1992, pp. 195–201

    Google Scholar 

  22. I.E. McDowall, M. Bolas, S. Pieper, S.S. Fisher, J. Humphries, Implementation and integration of a counterbalanced crt-based stereoscopic display for interactive viewpoint control in virtual environment applications. Proc. SPIE 1256 (16), 1990

    Google Scholar 

  23. S.R. Ellis, What are virtual environments? IEEE Computer Graphics and Applications 14 (1), 1994, pp. 17–22. doi:10.1109/38.250914

    Google Scholar 

  24. C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V. Kenyon, J.C. Hart, The cave: Audio visual experience automatic virtual environment. Communications of the ACM 35 (6), 1992, pp. 64–72. doi:10.1145/129888.129892

    Google Scholar 

  25. Plato, The Republic. The Academy Athens, Athens, 375 B.C.

    Google Scholar 

  26. H. Rheingold, Virtual reality. Summit Books, New York, 1991

    Google Scholar 

  27. C. Nowke, M. Schmidt, van Albada, S. J., J.M. Eppler, R. Bakker, M. Diesrnann, B. Hentschel, T. Kuhlen, Visnest – interactive analysis of neural activity data. 2013 IEEE Symposium on Biological Data Visualization (BioVis), 2013, pp. 65–72

    Google Scholar 

  28. S. Pick, F. Wefers, B. Hentschel, T. Kuhlen, Virtual air traffic system simulation – aiding the communication of air traffic effects. 2013 IEEE on Virtual Reality (VR), 2013, pp. 133–134

    Google Scholar 

  29. S. Pick, B. Hentschel, M. Wolter, I. Tedjo-Palczynski, T. Kuhlen, Automated positioning of annotations in immersive virtual environments. Proc. of the Joint Virtual Reality Conference of EuroVR - EGVE - VEC, 2010, pp. 1–8

    Google Scholar 

  30. G. Bishop, H. Fuchs, et al., Research directions in virtual environments. Computer Graphics 26 (3), 1992, pp. 153–177

    Google Scholar 

  31. D. Johansson, Convergence in Mixed Reality-Virtuality Environments: Facilitating Natural User Behavior. University of Örebro, Schweden, 2012

    Google Scholar 

  32. MSEAB Weibull, 2012. http://www.mseab.se/The-Virtual-Theatre.htm

  33. D. Ewert, K. Schuster, D. Johansson, D. Schilberg, S. Jeschke, Intensifying learner’s experience by incorporating the virtual theatre into engineering education. Proceedings of the 2013 IEEE Global Engineering Education Conference (EDUCON), 2013

    Google Scholar 

  34. S. Fisher, The ames virtual environment workstation (view). SIGGRAPH’89 (Course #29 Notes), 1989

    Google Scholar 

  35. M.A. Teitel, The eyephone: A head-mounted stereo display. Proc. SPIE 1256 (20), 1990, pp. 168–171

    Google Scholar 

  36. http://sensics.com/products/head-mounted-displays/zsight-integrated-sxga-hmd/specifications/

  37. ABB. http://new.abb.com/products/robotics/industrial-robots/irb-120. Last checked: 27.01.2014

  38. Blender. http://www.blender.org/. Last checked: 27.01.2014

  39. WorldViz. http://www.worldviz.com/products/vizard. Last checked: 27.01.2014

  40. Google. http://code.google.com/p/protobuf/wiki/thirdpartyaddons. Last checked: 27.01.2014

Download references

Acknowledgments

This work was supported by the project ELLI (Excellent Teaching and Learning within engineering science) as part of the excellence initiative at the RWTH Aachen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmann, M., Schuster, K., Schilberg, D., Jeschke, S. (2016). Bridging the Gap Between Students and Laboratory Experiments. In: Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds) Automation, Communication and Cybernetics in Science and Engineering 2015/2016. Springer, Cham. https://doi.org/10.1007/978-3-319-42620-4_20

Download citation

Publish with us

Policies and ethics