Skip to main content

Dynamic Spatial Pattern Recognition in Count Data

  • Conference paper
  • First Online:
New Developments in Statistical Modeling, Inference and Application

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 776 Accesses

Abstract

This study explores a Bayesian regression analysis for count data in the presence of spatial and temporal correlations. The contribution is to develop a regression model for count data that provides flexibility in modeling the complexity of zero-inflation, overdispersion, as well as spatial patterns in a dynamic manner. More importantly, it improves the computational efficiency via dimension reduction while handling the high-dimensional correlation structure in the data. The proposed model is applied to the survey data by the Northeast Fisheries Sciences Center (NEFSC) for estimation and prediction of the Atlantic cod in the Gulf of Maine—Georges Bank region. Both zero-inflated Poisson and negative binomial models are fitted. Model comparison shows the improvement in model fitting with consideration in the spatial-temporal correlation as well as the overdispersion in the count data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, D. K., Gelfand, A. E., & Citron-Pousty, S. (2002). Zero-inflated models with application to spatial count data. Environmental and Ecological Statistics, 9, 341–355.

    Article  MathSciNet  Google Scholar 

  • Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, N., Moyeed, R., & Stander, J. (2000). Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics, 1(4), 453–463.

    Article  MATH  Google Scholar 

  • Banerjee, S. (2005). On geodetic distance computations in spatial modeling. Biometrics, 61(2), 617–625.

    Article  MathSciNet  Google Scholar 

  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data. Boca Raton, London, New York, Washington, DC: Chapman & Hall/CRC.

    Google Scholar 

  • Banerjee, S., Gelfand, A., Finley, A., & Sang, H. (2008). Gaussian predictive process models for large spatial datasets. Journal of the Royal Statistical Society Series B, 70, 825–848.

    Article  MathSciNet  MATH  Google Scholar 

  • Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9–25.

    MATH  Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data (revised edn.) New York: Wiley.

    MATH  Google Scholar 

  • da Silva, A. R., & Rodrigues, T. C. V. (2014). Geographically weighted negative binomial regression – incorporating overdispersion. Statistics and Computing, 24(5), 769–783.

    Google Scholar 

  • De Oliveira, V. (2000). Bayesian prediction of clipped Gaussian random fields. Computational Statistics & Data Analysis, 34, 299–314.

    Google Scholar 

  • Dey, D. K., Chen, M. H., & Chang, H. (1997). Bayesian approach for nonlinear random effects models. Biometrics, 53(4), 1239–1252.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-based geostatistics (with discussion). Applied Statistics, 47, 299–350.

    MathSciNet  MATH  Google Scholar 

  • Fei, S., & Rathbun, S. L. (2006). A spatial zero-inflated Poisson model for oak regeneration. Environmental and Ecological Statistics, 13, 406–426.

    MathSciNet  Google Scholar 

  • Fernandes, M. V., Schmidt, A. M., & Migon, H. S. (2009). Modelling zero-inflated spatio-temporal processes. Statistical Modelling, 9(1), 3–25.

    Article  MathSciNet  Google Scholar 

  • Finley, A. O., Sang, H., Banerjee, S., & Gelfand, A. E. (2009). Improving the performance of predictive process modeling for large datasets. Computational Statistics & Data Analysis, 53(8), 2873–2884.

    Google Scholar 

  • Fu, Y. Z., Chu, P. X., & Lu, L. Y. (2015). A Baysian approach of joint models for clustered zero-inflated count data with skewness and measurement errors. Journal of Applied Statistics, 42(4), 745–761.

    Article  MathSciNet  Google Scholar 

  • Gelfand, A. E., Dey, D. K., & Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics (Vol. 4, pp. 147–167). Oxford: Oxford University Press.

    Google Scholar 

  • Ghosh, S. K., Mukhopadhyay, P., & Lu, J. C. (2006). Bayesian analysis of zero-inflated regression models. Journal of Statistical Planning and Inference, 136, 1360–1375.

    Article  MathSciNet  MATH  Google Scholar 

  • Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22.

    Article  Google Scholar 

  • Jiang, X., Dey, D. K., Prunier, R., Wilson, A. M., & Holsinger, K. E. (2013). A new class of flexible link functions with application to species co-occurrence in Cape floristic region. The Annals of Applied Statistics, 7(4), 2180–2204.

    Article  MathSciNet  MATH  Google Scholar 

  • Kassahun, W., Neyens, T., Molenberghs, G., Faes, C., & Verbeke, G. (2015). A joint model for hierarchical continuous and zero-inflated overdispersed count data. Journal of Statistical Computation and Simulation, 85(3), 552–571.

    Article  MathSciNet  Google Scholar 

  • Lee, K. L., & Bell, D. R. (2009). A spatial negative binomial regression of individual-level count data with regional and person-specific covariates. Working Paper Series, The Wharton School, University of Philadelphia.

    Google Scholar 

  • Li, H. (2008). Bayesian hierarchical models for spatial count data with application to fire frequency in British Columbia. Master’s thesis, Department of Mathmatics and Statistics, University of Victoria, Victoria, Canada.

    Google Scholar 

  • Lopes, H. F., Gamerman, D., & Salazar, E. (2011). Generalized spatial dynamic factor models. Computational Statistics & Data Analysis, 55, 1319–1330.

    Google Scholar 

  • Lopes, H. F., Salazar, E., & Gamerman, D. (2008). Spatial dynamic factor analysis. Bayesian Analysis, 3(4), 759–792.

    Article  MathSciNet  MATH  Google Scholar 

  • Min, Y., & Agresti, A. (2005). Random effect models for repeated measures of zero-inflated count data. Statistical Modelling, 5, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebbi, M., Wolfe, R., & Forbes, A. (2014). Disease mapping and regression with count data in the presence of overdispersion and spatial autocorrelation: A Bayesian model averaging approach. International Journal of Environmental Research and Public Health, 11, 883–902.

    Article  Google Scholar 

  • Nelder, J. A., & Wedderburn, R. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384.

    Article  Google Scholar 

  • Recta, V., Haran, M., & Rosenberger, J. L. (2012). A two-stage model for incidence and prevalence in point-level spatial count data. Environmetrics, 23, 162–174.

    Article  MathSciNet  Google Scholar 

  • Rumisha, S. F., Smith, T., Abdulla, S., Masanja, H., & Vounatsou, P. (2014). Modelling heterogeneity in malaria transmission using large sparse spatial-temporal entomological data. Global Health Action, 7, 22682. http://dx.doi.org/10.3402/gha.v7.22,682.

    Article  Google Scholar 

  • Salazar, E., SansĂł, B., Finley, A., Hammerling, D., Steinsland, I., Wang, X. (2011). Comparing and blending regional climate model prediction for the American southwest. Journal of Agricultural, Biological, and Environmental Statistics, 16, 586–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11), 1–37.

    Article  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583–639.

    Google Scholar 

  • Ver Hoef, J. M., & Jansen, J. K. (2007). Space-time zero-inflated count models of harbor seals. Environmetrics, 18, 697–712.

    Google Scholar 

  • Wang, X., Chen, M. H., Kuo, R. C., & Dey, D. K. (2015). Bayesian spatial-temporal modeling of ecological zero-inflated count data. Statistica Sinica, 25, 189–204.

    MathSciNet  MATH  Google Scholar 

  • Wang, X., & Dey, D. K. (2010). Generalized extreme value regression for binary response data: An application to B2B electronic payments system adoption. Annals of Applied Statistics, 4(4), 2000–2023.

    Article  MathSciNet  MATH  Google Scholar 

  • West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41(3/4), 434–449.

    Google Scholar 

  • Wikle, C. K., & Anderson, C. J. (2003). Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model. Journal of Geophysical Research (Atmospheres), 108, 9005–9019.

    Google Scholar 

Download references

Acknowledgements

We thank two referees for their constructive comments and suggestions. Dr. Wang thanks the domestic and international conference travel support provided by the Charles Phelps Taft Center at the University of Cincinnati. Dr. Chen’s research was partially supported by NIH grants #GM 70335 and #P01 CA142538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, X., Chen, MH., Kuo, R.C., Dey, D.K. (2016). Dynamic Spatial Pattern Recognition in Count Data. In: Jin, Z., Liu, M., Luo, X. (eds) New Developments in Statistical Modeling, Inference and Application. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-42571-9_10

Download citation

Publish with us

Policies and ethics