Skip to main content

Personalized Medicine, Biomarkers of Risk and Breast MRI

  • Chapter
  • First Online:
Breast Oncology: Techniques, Indications, and Interpretation

Abstract

Breast cancer is a heterogeneous disease with inter- and intra-tumor genetic variation impacting predictive and prognostic risk. This chapter discusses the use of breast MRI, the most sensitive imaging modality for high-risk screening and pre-operative assessment, to predict breast cancer risk, to define extent of disease and to monitor neoadjuvant chemotherapeutic response at the level of the individual patient. In the current clinical landscape, immunohistochemical surrogates are used to define molecular subtypes and personalized cancer treatment and care. Radiogenomics involves the correlation of genomic information with imaging features. Feature extraction from breast MRI is being pursued on a large scale as a potential non-invasive means of defining molecular subtypes and/or developing phenotypic biomarkers that can be clinically analogous to commercially available genomic assays. Neoadjuvant chemotherapy, treatment administered in operable cancers before surgery, is increasingly used, allowing for breast conservation in women who would traditionally require mastectomy. As breast cancer genetic molecular subtypes are predictive of recurrence free and overall survival, treatment based on breast cancer molecular subtype and breast MRI is critical in evaluating response though improvement in its sensitivity for pathologic complete response. Breast MRI in the neoadjuvant cohort has provided biomarkers of response and insight into the biologic basis of disease. MRI is at the forefront of technology providing prognostic indicators as well as a crucial tool in personalizing medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh MF, Nathanson KL, Couch FJ, Offit K. Genomic biomarkers for breast cancer risk. Adv Exp Med Biol. 2016;882:1–32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57:75–89.

    Article  PubMed  Google Scholar 

  3. Sardanelli F, Boetes C, Borisch B, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. 2010;46:1296–316.

    Article  PubMed  Google Scholar 

  4. Evans DG, Kesavan N, Lim Y, et al. MRI breast screening in high-risk women: cancer detection and survival analysis. Breast Cancer Res Treat. 2014;145:663–72.

    Article  PubMed  Google Scholar 

  5. Morris EA. Diagnostic breast MR imaging: current status and future directions. Radiol Clin North Am. 2007;45:863–80.

    Article  PubMed  Google Scholar 

  6. Gierach GL, Ichikawa L, Kerlikowske K, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012;104:1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology. 2011;260:50–60.

    Article  PubMed  Google Scholar 

  8. Lee NA, Rusinek H, Weinreb J, et al. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging. AJR Am J Roentgenol. 1997;168:501–6.

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Chitiboi T, Meine H, Gunther M, Hahn HK. Principles and methods for automatic and semi-automatic tissue segmentation in MRI data. MAGMA. 2016;29:95–110.

    Article  CAS  PubMed  Google Scholar 

  10. Uematsu T, Kasami M, Watanabe J. Should breast MRI be performed with adjustment for the phase in patients' menstrual cycle? Correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients' menstrual cycle. Eur J Radiol. 2012;81:1539–42.

    Article  PubMed  Google Scholar 

  11. Jansen SA, Lin VC, Giger ML, Li H, Karczmar GS, Newstead GM. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast. Eur Radiol. 2011;21:1374–82.

    Article  PubMed  Google Scholar 

  12. Ha R, Mema E, Guo X, et al. Three-dimensional quantitative validation of breast magnetic resonance imaging background parenchymal enhancement assessments. Curr Probl Diagn Radiol. 2016;45(4):297–303. doi:10.1067/j.cpradiol.2016.02.003.

    Google Scholar 

  13. Klifa C, Suzuki S, Aliu S, et al. Quantification of background enhancement in breast magnetic resonance imaging. J Magn Reson Imaging. 2011;33:1229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen JH, Yu HJ, Hsu C, Mehta RS, Carpenter PM, Su MY. Background parenchymal enhancement of the contralateral nNormal breast: association with tumor response in breast cancer patients receiving neoadjuvant chemotherapy. Transl Oncol. 2015;8:204–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. van der Velden BH, Dmitriev I, Loo CE, Pijnappel RM, Gilhuijs KG. Association between parenchymal enhancement of the contralateral breast in dynamic contrast-enhanced MR imaging and outcome of patients with unilateral invasive breast cancer. Radiology. 2015;276:675–85.

    Article  PubMed  Google Scholar 

  16. American College of Radiology. (2014) ACR practice parameter for the performance of screening and diagnostic mammography. http://www.acr.org/~/media/5d883e5f6a694c8b8186378b76398837.pdf. Accessed 2 June 2016.

  17. Society of Breast Imaging. (2015) ACR and SBI continue to recommend regular mammography starting at age 40. https://www.sbi-online.org/Portals/0/ACR-SBI%20press%20release%20ACS%20FINAL%20for%20web.pdf. Accessed 2 June 2016.

  18. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen PL, Taghian AG, Katz MS, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol. 2008;26:2373–8.

    Article  PubMed  Google Scholar 

  20. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  21. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  22. Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011;378:1804–11.

    Article  PubMed  Google Scholar 

  23. Boisserie-Lacroix M, Hurtevent-Labrot G, Ferron S, Lippa N, Bonnefoi H, Mac Grogan G. Correlation between imaging and molecular classification of breast cancers. Diagn Interv Imaging. 2013;94:1069–80.

    Article  CAS  PubMed  Google Scholar 

  24. Bhooshan N, Giger ML, Jansen SA, Li H, Lan L, Newstead GM. Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers. Radiology. 2010;254:680–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grimm LJ. Breast MRI radiogenomics: current status and research implications. J Magn Reson Imaging. 2016;43:1269–78.

    Article  PubMed  Google Scholar 

  26. Sutton EJ, Dashevsky BZ, Oh JH, et al. Breast cancer molecular subtype classifier that incorporates MRI features. J Magn Reson Imaging. 2016;44(1):122–9. doi:10.1002/jmri.25119.

    Article  PubMed  Google Scholar 

  27. Grimm LJ, Zhang J, Mazurowski MA. Computational approach to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging. 2015;42:902–7.

    Article  PubMed  Google Scholar 

  28. Zhu Y, Li H, Guo W, et al. Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma. Sci Rep. 2015;5:17787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Zhu Y, Burnside ES et al MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology. 2016;152110. doi:10.1148/radiol.

  30. Sutton EJ, Oh JH, Dashevsky BZ, et al. Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay. J Magn Reson Imaging. 2015;42:1398–406.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mamounas EP. Impact of neoadjuvant chemotherapy on locoregional surgical treatment of breast cancer. Ann Surg Oncol. 2015;22:1425–33.

    Article  PubMed  Google Scholar 

  33. Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26:778–85.

    Article  PubMed  Google Scholar 

  34. Kaufmann M, von Minckwitz G, Mamounas EP, et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol. 2012;19:1508–16.

    Article  PubMed  Google Scholar 

  35. Bear HD, Anderson S, Smith RE, et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2006;24:2019–27.

    Article  CAS  PubMed  Google Scholar 

  36. Boughey JC, McCall LM, Ballman KV, et al. Tumor biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer: findings from the ACOSOG Z1071 (Alliance) Prospective Multicenter Clinical Trial. Ann Surg. 2014;260:608–14 .discussion 614-606

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dialani V, Chadashvili T, Slanetz PJ. Role of imaging in neoadjuvant therapy for breast cancer. Ann Surg Oncol. 2015;22:1416–24.

    Article  PubMed  Google Scholar 

  38. Dialani V, Chadashvili T, Slanetz PJ. Role of imaging in neoadjuvant therapy for breast cancer. Ann Surg Oncol. 2015;22(5):1416–24. doi:10.1245/s10434-015-4403-9.

    Article  PubMed  Google Scholar 

  39. Cho N, Im SA, Park IA, et al. Breast cancer: early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging. Radiology. 2014;272:385–96.

    Article  PubMed  Google Scholar 

  40. Pinker K, Bogner W, Baltzer P, et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Invest Radiol. 2014;49:421–30.

    Article  CAS  PubMed  Google Scholar 

  41. Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging. 2006;24:843–7.

    Article  PubMed  Google Scholar 

  42. Iwasa H, Kubota K, Hamada N, Nogami M, Nishioka A. Early prediction of response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and gray-scale ultrasonography. Oncol Rep. 2014;31:1555–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lobbes MB, Prevos R, Smidt M, et al. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review. Insights Imaging. 2013;4:163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7:91–101.

    Article  CAS  PubMed  Google Scholar 

  45. Wu J, Gong G, Cui Y, Li R Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reson Imaging. 2016; doi:10.1002/jmri.25279. [Epud ahead of print].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Sutton MDCM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sutton, E.J., Purvis, N., Pinker-Domenig, K., Morris, E.A. (2017). Personalized Medicine, Biomarkers of Risk and Breast MRI. In: Heller, S., Moy, L. (eds) Breast Oncology: Techniques, Indications, and Interpretation. Springer, Cham. https://doi.org/10.1007/978-3-319-42563-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42563-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42561-0

  • Online ISBN: 978-3-319-42563-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics