Skip to main content

Integration of a Knowledge Database and Machine Vision Within a Robot-Based CPS

  • Chapter
  • First Online:
Industrial Internet of Things

Part of the book series: Springer Series in Wireless Technology ((SSWT))

  • 9223 Accesses

Abstract

In this chapter the integration of a knowledge database and machine vision within a robot-based CPS is picked out as a central theme. Three examples show the differences of implementing a robot-based CPS within large or small and medium-sized enterprises. The use cases describe the implementation of prototypes in different surroundings. It can either be an automated basic process in hazardous surroundings like the load of petrochemical liquids, one of several automated processes ongoing parallel in a classical production plant like the assembling process or an implementation to connect different automated process steps using an overall RFID system in the laundry process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel-Heuser B (2013) Automation as an enabler for industry 4.0 in production on the basis of cyber physical systems. In: Vogel-Heuser B (ed): Engineering of the request until the operation

    Google Scholar 

  2. Kagermann H, Wahlster W, Helbig J (2013) Implementation recommendations for the future industrial project 4.0 final report of the working group industry 4.0. In: Forschungsunion im Stifterverband für die Deutsche Wissenschaft, Berlin

    Google Scholar 

  3. Bühler J, Bauer W (2014) Industry 4.0—Department of Economics, potential for Germany. Studie. BITKOM, Bundesverband Informationswirtschaft. Telekommunikation und Neue Medien, Berlin

    Google Scholar 

  4. VDI/VDE-Gesellschaft (2013) Cyber-physical systems: Chancen und Nutzen aus Sicht der Automation. Thesen und Handlungsfelder. (ed) v. VDI/VDE-Gesellschaft

    Google Scholar 

  5. Sendler U (2013) Industrie 4.0-Beherrschung der industriellen Komplexität mit SysLM (Systems lifecycle management). In: Baum G, Borcherding H, Broy M et al (ed) Industrie 4.0. Beherrschung der industriellen Komplexität mit SysLM, v. Sendler U. Springer, Berlin, pp 1–19

    Google Scholar 

  6. VDI (1990) Assembly and handling technology. Handling functions, handling equipment. Terms, definitions, symbols. Düsseldorf: VDI (VDI-Richtlinien, 2860)

    Google Scholar 

  7. DIN German Institute of Standardization e.V (2010a) DIN EN ISO 9241-210:2010, 01-2011: ergonomics of human-system interaction

    Google Scholar 

  8. Robo-Partner: Seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future (2014) 2212–8271, Elsevier B.V

    Google Scholar 

  9. ISO 10218-1 (2011) Robots and robotic devices—safety requirements for industrial robots—part 1: robots (ISO 10218-1:2011), German version EN ISO 10218-1:2011

    Google Scholar 

  10. Günthner WA, Ten Hompel M, Chisu R, Nettsträter A, Roidl M (2010) Internet of things in intralogistics. Heidelberg, Springer

    Google Scholar 

  11. Jähne B, Massen R, Nickolay B, Scharfenberg (1995) Technical image processing—Maschinelles Sehen. Springer, Berlin

    Google Scholar 

  12. Jähne B (2012) Digital image porcessing. Springer, Berlin

    Google Scholar 

  13. Lehmann C, Städter JP, Berger U, Keller S, Gnorski H (2013) Semi-automated handling of manhole covers for tank wagon processing using industrial robots. In: Robotic assistance technologies in industrial settings, IEEE/RSJ international conference on intelligent robots and systems (IROS), Tokyo, Japan, 3–8 November 2013

    Google Scholar 

  14. Wächter K, Klabuhn J, Berger U (2015) Influence of Industry 4.0 on value networks using the example of the dry cleaning industry. In: Informatik 2015, Cottbus, 28 September–02 October 2015

    Google Scholar 

  15. ATEX (2006) Directive 2006/42/ EC of the European parliament and of the council of 17 May 2006 on machinery and amending directive 95/16/EG

    Google Scholar 

  16. DIN German Institute of Standardization e.V (2010b) DIN EN ISO 12100: 2010 Safety of machinery—general principles for design—risk assessment and risk reduction

    Google Scholar 

  17. DIN German Institute of Standardization e.V. (1995) DIN EN 60721 Classification of environmental conditions part 3: classification of environmental parameters and their severities Sect. 4: stationary use at non-weather-protected

    Google Scholar 

  18. ATEX (2014) Directive 2014/34/ EU of the European parliament and of the council of 26 February 2014 harmonization of the laws of the member states concerning equipment and protective systems intended for use in potentially explosive atmospheres

    Google Scholar 

  19. DIN German Institute of Standardization e.V. (2011) DIN EN 12561:2011: Tank wagon part 6: manholes. Beuth Verlag GmbH; Berlin

    Google Scholar 

  20. PrimeSense (2013) Developers. http://www.primesense.com/developers/get-your-sensor/. Accessed 16 May 2013

  21. ifixit (2010) Microsoft Kinect Teardown. http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1. Accessed 05 Nov 2015

  22. Kinectprices (2011) Kinect technical specifications. https://msdn.microsoft.com/en-us/library/jj131033.aspx. Accessed 13 Feb 2013

  23. Freedman (2010) Patentnr. US 2010/0118123 A1, USA

    Google Scholar 

  24. Fleisch E, Mattern F (2005) The internet of things. Springer, Berlin

    Google Scholar 

  25. Laundry Innovation Network LIN (2015) Development of a process and the associated logistical processes for holistic RFID project in closed laundry cycle, including the processes for large customers. http://w-lin.eu/gruen/abschlussbericht_rfid_online.pdf. Accessed 13 May 2015

  26. Knolle M (2006) Implementation of social standards in the supply chain of clothing companies through the establishment of networks

    Google Scholar 

  27. Behrendt S (2010) Development prospects of the pervasive computing. In: Siegfried Behrendt (Hg.): Integriertes Roadmapping. Springer, Berlin, pp 25–50

    Google Scholar 

  28. Luckett D (2006) The supply chain. In: Sammes AJ, Steventon A, Wright S (eds) Intelligent spaces. Springer (Computer Communications and Networks), London, pp 55–63

    Chapter  Google Scholar 

  29. Anderson D, Delattre AJ (2002) Five predictions that will make you rethink your supply chain. Supply Chain Manag Rev 6(5):25–30

    Google Scholar 

  30. Westhuis J, Bruns R, Dunkel J, Knop W, Eichstädt T (2011) Intelligent locating of objects with complex event processing. In: Proceedings BTW—Workshops, Technische Universität Kaiserslautern, Schriftenreihe des Fachbereichs Informatik Bd. 30, pp 33–42

    Google Scholar 

  31. Zentrales Innovations programm Mittelstand (Central Innovation Programme SME) (ZIM) (2012) Development of a process and the associated logistical processes for holistic RFID project in a closed laundry cycle including the processes for customers. http://w-lin.eu/wp-content/uploads/2012/07/abschlussbericht_rfid_online.pdf

  32. Lotter B, Wiendahl HP (2012) Mounting in the industrial production. Springer, Berlin

    Google Scholar 

  33. Wildemann H (2011) New installation concepts. Realization of product classification systems in small series assembly of complex products in small and medium enterprises. Technische Universität München, München

    Google Scholar 

  34. DIN German Institute of Standardization e.V. (2003–2009) DIN 8593-1 Manufacturing processes part 1 assembly: classification, subdivision, terms

    Google Scholar 

  35. DIN German Institute of Standardization e.V. (2003–2009) DIN 8593-3 Manufacturing processes part 3 pressing; classification, subdivision, terms

    Google Scholar 

  36. VDI-Directive 2860 (1990) Assembly and handling technology

    Google Scholar 

  37. Ferrara P, Kriegl V (2015) Robotics in industry and research—an overview of the robotics landscape in Austria. In: Elektrotech. Inftech, vol 132, no (4–5). Springer, Wien, pp 230–236

    Google Scholar 

  38. Haag M (2015) Collaborative working with robots—vision and realistic perspective. In: Alfons Botthof und Ernst Andreas Hartmann (Hg.) Zukunft der Arbeit in Industrie 4.0. Springer, Berlin, pp 59–64

    Google Scholar 

  39. Demant C, Streicher-Abel B, Springhoff A (2011) Industrial image processing. Springer, Berlin

    Google Scholar 

  40. Bässmann H (2004) Image processing ad oculos. Springer, Heidelberg

    Google Scholar 

  41. Beyerer J, Puente León F, Frese C (2012) Automatic visual inspection. Springer, Berlin

    Google Scholar 

  42. Schenk J, Rigoll G (2010) Human-machine communication. Springer, Berlin

    Google Scholar 

  43. Bauernhansl T, ten Hompel M, Vogel-Heuser B (2014) Industry 4.0 in production, automation and logistics. Springer Fachmedien Wiesbaden, Wiesbaden

    Google Scholar 

  44. Federal Ministry of Education and Research (2014) Image of the future “Industry 4.0”, Bonn

    Google Scholar 

  45. Cyber-Physical Systems (2011) Springer, Berlin (acatech Position)

    Google Scholar 

  46. Herrera CD, Kannala J, Heikkilä J (2012) Joint depth and color camera calibration with distortion correction. IEEE Trans Pattern Anal Mach Intell (TPAMI) 34(10):2058–2064

    Google Scholar 

  47. Promotor Group (2013) Communication of research union economy—science, implementation recommendations for the future project industry 4.0

    Google Scholar 

  48. Embedded Systems. 1, Tagungen und Berichte, vol 3. Kassel University Press, Kassel, pp 1–4

    Google Scholar 

  49. Weller W (2014) On the way to the 4th industrial revolution. Technologies and their applications. Faculty I—mathematics and natural sciences

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berger, U., Wächter, K., Ampatzopoulos, A., Klabuhn, J. (2017). Integration of a Knowledge Database and Machine Vision Within a Robot-Based CPS. In: Jeschke, S., Brecher, C., Song, H., Rawat, D. (eds) Industrial Internet of Things. Springer Series in Wireless Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42559-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42559-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42558-0

  • Online ISBN: 978-3-319-42559-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics