Skip to main content

Transfer Printing for Cyber-Manufacturing Systems

  • Chapter
  • First Online:

Part of the book series: Springer Series in Wireless Technology ((SSWT))

Abstract

As a versatile tool, transfer printing provides routes to assemble micro- and nano-structures onto functional substrates, with promising applications ranging from stretchable electronics in diagnostic/therapeutic platforms and human-machine interfaces to dissolvable devices in bio-implants and environmentally benign sensors. The conventional process involves pickup of micro-devices from their fabricated substrates, followed by delivery onto the target substrate of interest. This chapter summarizes the fundamental mechanics and materials aspects of transfer printing, as well as recent developments in advanced techniques that allow for applications in systems with varying levels of complexity. The opportunities and challenges on emerging use for cyber-manufacturing systems are also discussed.

Varun Ravikumar and Ning Yi—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rajkumar RR, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th design automation conference, pp 731–736

    Google Scholar 

  2. Wolf M (2014) High-performance embedded computing: applications in cyber-physical systems and mobile computing. Newnes

    Google Scholar 

  3. Lohr S (2012) The age of big data. New York Times, vol 11

    Google Scholar 

  4. Kagermann H, Helbig J, Hellinger A, Wahlster W (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0: securing the future of german manufacturing industry; final report of the Industrie 4.0 working group, Forschungsunion

    Google Scholar 

  5. Shipp SS, Gupta N, Lal B, Scott JA, Weber CL, Finnin MS et al (2012) Emerging global trends in advanced manufacturing, DTIC Document

    Google Scholar 

  6. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, US

    Google Scholar 

  7. Huang Y, Leu MC (2014) Frontiers of additive manufacturing research and education

    Google Scholar 

  8. Kim D-H, Lu N, Ma R, Kim Y-S, Kim R-H, Wang S et al (2011) Epidermal electronics. Science 333:838–843

    Article  Google Scholar 

  9. Kang S-K, Murphy RK, Hwang S-W, Lee SM, Harburg DV, Krueger NA et al (2016) Bioresorbable silicon electronic sensors for the brain. Nature 530:71–76

    Google Scholar 

  10. Jeong JW, Yeo WH, Akhtar A, Norton JJ, Kwack YJ, Li S et al (2013) Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater 25:6839–6846

    Article  Google Scholar 

  11. Ying M, Bonifas AP, Lu N, Su Y, Li R, Cheng H et al (2012) Silicon nanomembranes for fingertip electronics. Nanotechnology 23:344004

    Google Scholar 

  12. Rogers JA, Someya T, Huang YG (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607

    Article  Google Scholar 

  13. Kim DH, Song JZ, Choi WM, Kim HS, Kim RH, Liu ZJ et al (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA 105:18675–18680

    Article  Google Scholar 

  14. Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song JZ et al (2008) Stretchable and foldable silicon integrated circuits. Science 320:507–511

    Article  Google Scholar 

  15. Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737

    Article  Google Scholar 

  16. Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA (2012) Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 24:5284–5318

    Article  Google Scholar 

  17. Feng X, Meitl MA, Bowen AM, Huang Y, Nuzzo RG, Rogers JA (2007) Competing fracture in kinetically controlled transfer printing. Langmuir 23:12555–12560

    Article  Google Scholar 

  18. Meitl MA, Zhu ZT, Kumar V, Lee KJ, Feng X, Huang YY et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5:33–38

    Article  Google Scholar 

  19. Anderson TL, Anderson T (2005) Fracture mechanics: fundamentals and applications. CRC press, Boca Raton

    Google Scholar 

  20. Carlson A, Kim-Lee H-J, Wu J, Elvikis P, Cheng H, Kovalsky A et al (2011) Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl Phys Lett 98:264104

    Article  Google Scholar 

  21. Feng X, Cheng H, Bowen AM, Carlson AW, Nuzzo RG, Rogers JA (2013) A finite-deformation mechanics theory for kinetically controlled transfer printing. J Appl Mech 80:061023

    Article  Google Scholar 

  22. Cheng H, Li M, Wu J, Carlson A, Kim S, Huang Y et al (2013) A viscoelastic model for the rate effect in transfer printing. J Appl Mech 80:041019

    Article  Google Scholar 

  23. Chen H, Feng X, Huang Y, Huang Y, Rogers JA (2013) Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing. J Mech Phys Solids 61:1737–1752

    Article  Google Scholar 

  24. Kim TH, Carlson A, Ahn JH, Won SM, Wang SD, Huang YG et al (2009) Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl Phys Lett 94:113502

    Article  Google Scholar 

  25. Li R, Li Y, Lü C, Song J, Saeidpourazar R, Fang B et al (2012) Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis. Soft Matter 8:3122–3127

    Article  Google Scholar 

  26. Li R, Li Y, Lü C, Song J, Saeidpourazar R, Fang B et al (2012) Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing. Int J Fract 176:189–194

    Article  Google Scholar 

  27. Saeidpourazar R, Sangid MD, Rogers JA, Ferreira PM (2012) A prototype printer for laser driven micro-transfer printing. J Manuf Process 14:416–424

    Article  Google Scholar 

  28. Carlson A, Wang S, Elvikis P, Ferreira PM, Huang Y, Rogers JA (2012) Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing. Adv Funct Mater 22:4476–4484

    Article  Google Scholar 

  29. Kim S, Wu JA, Carlson A, Jin SH, Kovalsky A, Glass P et al (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci USA 107:17095–17100

    Article  Google Scholar 

  30. Cheng H, Wu J, Yu Q, Kim-Lee H-J, Carlson A, Turner KT et al (2012) An analytical model for shear-enhanced adhesiveless transfer printing. Mech Res Commun 43:46–49

    Article  Google Scholar 

  31. Liao L, Bai J, Qu Y, Lin Y-C, Li Y, Huang Y et al (2010) High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc Natl Acad Sci 107:6711–6715

    Article  Google Scholar 

  32. Kim T-I, Lee SH, Li Y, Shi Y, Shin G, Lee SD et al (2014) Temperature-and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing. Appl Phys Lett 104:051901

    Article  Google Scholar 

  33. Yoon J, Baca AJ, Park SI, Elvikis P, Geddes JB, Li LF et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915

    Article  Google Scholar 

  34. Kim RH, Bae MH, Kim DG, Cheng H, Kim BH, Kim DH et al (2011) Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett 11:3381–3886

    Google Scholar 

  35. Chanda D, Shigeta K, Gupta S, Cain T, Carlson A, Mihi A et al (2011) Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat Nanotechnol 6:402–407

    Article  Google Scholar 

  36. Furman B, Menard E, Gray A, Meitl M, Bonafede S, Kneeburg D et al (2010) A high concentration photovoltaic module utilizing micro-transfer printing and surface mount technology. In: 2010 35th IEEE Photovoltaic Specialists Conference (PVSC), pp 000475–000480

    Google Scholar 

  37. Kim J, Banks A, Cheng H, Xie Z, Xu S, Jang KI et al (2015) Epidermal electronics with advanced capabilities in near—field communication. small 11:906–912

    Google Scholar 

  38. Hattori Y, Falgout L, Lee W, Jung SY, Poon E, Lee JW et al (2014) Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthc Mater 3:1597–1607

    Article  Google Scholar 

  39. Norton JJ, Lee DS, Lee JW, Lee W, Kwon O, Won P et al (2015) Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci 112:3920–3925

    Article  Google Scholar 

  40. Lee TW, Zaumseil J, Bao ZN, Hsu JWP, Rogers JA (2004) Organic light-emitting diodes formed by soft contact lamination. Proc Natl Acad Sci USA 101:429–433

    Article  Google Scholar 

  41. Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K et al (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8:494–499

    Article  Google Scholar 

  42. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468–1472

    Article  Google Scholar 

  43. Hwang SW, Kim DH, Tao H, Kim Ti, Kim S, Yu KJ et al (2013) Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv Funct Mater 23:4087–4093

    Article  Google Scholar 

  44. Khang DY, Jiang HQ, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212

    Article  Google Scholar 

  45. Viventi J, Kim DH, Moss JD, Kim YS, Blanco JA, Annetta N et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2:24ra22

    Google Scholar 

  46. Sun YG, Choi WM, Jiang HQ, Huang YGY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1:201–207

    Article  Google Scholar 

  47. Cheng H, Song J (2013) A simply analytic study of buckled thin films on compliant substrates. J Appl Mech 81:024501

    Article  Google Scholar 

  48. Cheng H, Zhang Y, Hwang K-C, Rogers JA, Huang Y (2014) Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int J Solids Struct 51:3113–3118

    Article  Google Scholar 

  49. Liu Z, Cheng H, Wu J (2014) Mechanics of solar module on structured substrates. J Appl Mech 81:064502

    Article  Google Scholar 

  50. Zhang Y, Fu H, Su Y, Xu S, Cheng H, Fan JA et al (2013) Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater 61:7816–7827

    Article  Google Scholar 

  51. Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L et al (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4:1543

    Article  Google Scholar 

  52. Jeong JW, Kim MK, Cheng H, Yeo WH, Huang X, Liu Y et al (2014) Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthc Mater 3:642–648

    Article  Google Scholar 

  53. Honda W, Harada S, Arie T, Akita S, Takei K (2014) Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv Funct Mater 24:3299–3304

    Article  Google Scholar 

  54. Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE et al (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404

    Article  Google Scholar 

  55. Dagdeviren C, Hwang SW, Su Y, Kim S, Cheng H, Gur O et al (2013) Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9:3398–3404

    Article  Google Scholar 

  56. Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E et al (2014) Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci 111:1927–1932

    Article  Google Scholar 

  57. Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM et al (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764

    Article  Google Scholar 

  58. Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H et al (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944

    Article  Google Scholar 

  59. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N et al (2014) 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun 5:3329

    Google Scholar 

  60. Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY et al (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266

    Google Scholar 

  61. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Article  Google Scholar 

  62. Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater

    Google Scholar 

  63. Huang X, Cheng H, Chen K, Zhang Y, Zhang Y, Liu Y et al (2013) Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans Biomed Eng 60:2848–2857

    Article  Google Scholar 

  64. Huang X, Liu Y, Cheng H, Shin WJ, Fan JA, Liu Z et al (2014) Materials and designs for wireless epidermal sensors of hydration and strain. Adv Funct Mater 24:3846–3854

    Article  Google Scholar 

  65. Cheng H, Zhang Y, Huang X, Rogers JA, Huang Y (2013) Analysis of a concentric coplanar capacitor for epidermal hydration sensing. Sens Actuators A Phys 203:149–153

    Article  Google Scholar 

  66. Jang KI, Han SY, Xu S, Mathewson KE, Zhang Y, Jeong JW et al (2014) Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun 5:4779

    Article  Google Scholar 

  67. Ko HC, Stoykovich MP, Song JZ, Malyarchuk V, Choi WM, Yu CJ et al (2008) A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454:748–753

    Article  Google Scholar 

  68. Wang SD, Xiao JL, Song JZ, Ko HC, Hwang KC, Huang YG et al (2010) Mechanics of curvilinear electronics. Soft Matter 6:5757–5763

    Article  Google Scholar 

  69. Jang K-I, Chung HU, Xu S, Lee CH, Luan H, Jeong J et al (2015) Soft network composite materials with deterministic and bio-inspired designs. Nat Commun 6

    Google Scholar 

  70. Ko HC, Shin G, Wang SD, Stoykovich MP, Lee JW, Kim DH et al (2009) Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5:2703–2709

    Article  Google Scholar 

  71. Yu KJ, Kuzum D, Hwang S-W, Kim BH, Juul H, Kim NH et al (2016) Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater

    Google Scholar 

  72. Hwang S-W, Lee CH, Cheng H, Jeong J-W, Kang S-K, Kim J-H et al (2015) Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett 15:2801–2808

    Article  Google Scholar 

  73. Hwang SW, Park G, Cheng H, Song JK, Kang SK, Yin L et al (2014) 25th anniversary article: materials for high-performance biodegradable semiconductor devices. Adv Mater 26:1992–2000

    Article  Google Scholar 

  74. Kang S-K, Park G, Kim K, Hwang S-W, Cheng H, Shin J et al (2015) Dissolution chemistry and biocompatibility of silicon-and germanium-based semiconductors for transient electronics. ACS Appl Mater Interfaces 7:9297–9305

    Article  Google Scholar 

  75. Kang S-K, Hwang S-W, Cheng H, Yu S, Kim BH, Kim J-H et al (2014) Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater 24:4427–4434

    Article  Google Scholar 

  76. Yin L, Farimani AB, Min K, Vishal N, Lam J, Lee YK et al (2015) Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv Mater 27:1857–1864

    Article  Google Scholar 

  77. Fu K, Wang Z, Dai J, Carter M, Hu L (2016) Transient electronics: materials and devices. Chem Mater 28:3527–3539

    Google Scholar 

  78. Cheng H, Vepachedu V (2016) Recent development of transient electronics. Theor Appl Mech Lett 6:21–31

    Google Scholar 

  79. Park CW, Kang SK, Hernandez HL, Kaitz JA, Wie DS, Shin J et al (2015) Thermally triggered degradation of transient electronic devices. Adv Mater 27:3783–3788

    Article  Google Scholar 

  80. Hernandez HL, Kang SK, Lee OP, Hwang SW, Kaitz JA, Inci B et al (2014) Triggered transience of metastable poly (phthalaldehyde) for transient electronics. Adv Mater 26:7637–7642

    Article  Google Scholar 

  81. Hwang SW, Tao H, Kim DH, Cheng H, Song JK, Rill E et al (2012) A physically transient form of silicon electronics. Science 337:1640–1644

    Article  Google Scholar 

  82. Hwang SW, Park G, Edwards C, Corbin EA, Kang SK, Cheng H et al (2014) Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 8:5843–5851

    Article  Google Scholar 

  83. Yin L, Cheng H, Mao S, Haasch R, Liu Y, Xie X et al (2014) Dissolvable metals for transient electronics. Adv Funct Mater 24:645–658

    Article  Google Scholar 

  84. Brenckle MA, Cheng H, Hwang S, Tao H, Paquette M, Kaplan DL et al (2015) Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Appl Mater Interfaces 7:19870–19875

    Article  Google Scholar 

  85. Hwang SW, Song JK, Huang X, Cheng H, Kang SK, Kim BH et al (2014) High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater 26:3905–3911

    Article  Google Scholar 

  86. Kim DH, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9:511–517

    Article  Google Scholar 

  87. Jung YH, Chang TH, Zhang H, Yao C, Zheng Q, Yang VW et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    Article  Google Scholar 

  88. Kim S, Carlson A, Cheng H, Lee S, Park J-K, Huang Y et al (2012) Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Appl Phys Lett 100:171909

    Article  Google Scholar 

  89. Yang SY, Carlson A, Cheng H, Yu Q, Ahmed N, Wu J et al (2012) Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Adv Mater 24:2117–2122

    Article  Google Scholar 

  90. Lee EA (2008) Cyber physical systems: design challenges. In: 11th IEEE symposium on object/component/service-oriented real-time distributed computing, ISORC 2008, pp 363–369

    Google Scholar 

  91. Monostori L (2014) Cyber-physical production systems: roots, expectations and R&D challenges. In: 47th CIRP conference on manufacturing systems, pp 9–13

    Google Scholar 

  92. High Confidence Software and Systems Coordinating Group (2009) High-confidence medical devices: cyber-physical systems for 21st century health care. A research and development needs report

    Google Scholar 

  93. Baheti R, Gill H (2010) Cyber-physical systems. In: Samad T, Annaswamy A (eds) The impact of control technology. IEEE Control Systems Society, pp 161–166

    Google Scholar 

  94. Xu S, Yan Z, Jang K-I, Huang W, Fu H, Kim J et al (2015) Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347:154–159

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering, and Materials Research Institute at The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanyu Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ravikumar, V., Yi, N., Vepachedu, V., Cheng, H. (2017). Transfer Printing for Cyber-Manufacturing Systems. In: Jeschke, S., Brecher, C., Song, H., Rawat, D. (eds) Industrial Internet of Things. Springer Series in Wireless Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42559-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42559-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42558-0

  • Online ISBN: 978-3-319-42559-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics