Skip to main content

Cyber Physical Production Control

  • Chapter
  • First Online:
Book cover Industrial Internet of Things

Abstract

Cyber Physical Production Control One major problem of today’s producing companies is to reach a high adherence to delivery dates while considering the volatile market situation as well as economic aspects. This problem can only be solved by using a production control that is optimally adapted to the processes. A good working, process-oriented production control is essential for being able to control the production situation and to ensure a high adherence to delivery dates. Data generation and processing determine the success of production control. Current processes and IT systems have several shortcomings in meeting these challenges. The solution for this problem is the so called “cyber physical production control” (CPPC). It optimally supports the production scheduler in his decision making process based on real-time high-resolution data. With the help of data analytics, the production controller receives decision support over various steps. Due to CPPC, the overall goal of a high adherence to delivery dates can be fundamentally increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albright SC, Winston WL, Zappe CJ (2011) Data analysis and decision making, 4th edn. South-Western/Cengage Learning, Mason

    Google Scholar 

  2. Arbeitskreis Smart Service Welt/acatech (2015) Smart Service Welt. Umsetzungsempfehlungen für das Zukunftsprojekt Internetbasierte Dienste für die Wirtschaft. Berlin

    Google Scholar 

  3. Blue Yonder (2015) About Blue Yonder. http://www.blue-yonder.com/en/company/about.html?show=500&url=technology-review-award

  4. Broy M (2010) Cyber-physical systems. Innovation durch software-intensive eingebettete systeme. Springer-Verlag, Berlin

    Google Scholar 

  5. Brunk T (2014) Wie Daten wirklich wertvoll werden. In: Computerwoche (10). http://www.wiso-net.de/webcgi?START=A60&DOKV_DB=ZECO&DOKV_NO=CW2014030383044056368312447482&DOKV_HS=0&PP=1. Checked 3 Mar 2014

  6. Crone SF (2010) Neuronale Netze zur Prognose und Disposition im Handel. 1. Aufl. Wiesbaden: Gabler (Gabler Research [60])

    Google Scholar 

  7. Dünnebacke D (2008) Planung und Bewertung des RFID-Einsatzes am Beispiel der Firma Zentis. Vortragsunterlagen zur EDI-Convention. FIR—Forschungsinstitut für Rationalisierung e. V. Aachen. http://publications.rwth-aachen.de/record/230877

  8. Eklund A, Ohlsson H, Andersson M, Rydell J, Ynnerman A, Knutsson H (2009) Using real-time fMRI to control a dynamical system. Honolulu, Hawaii

    Google Scholar 

  9. Evans JR (2013) Business analytics. Methods, models, and decisions, 1st edn. Pearson, Boston

    Google Scholar 

  10. Eversheim W (2002) Organisation in der Produktionstechnik 3. Arbeitsvorbereitung, 4th edn. Springer, Berlin

    Google Scholar 

  11. Geiger T (2014) Ein Blick durch die virtuelle Frontscheibe. http://www.tagesanzeiger.ch/auto/technik/Ein-Blick-durch-die-virtuelle-Frontscheibe/story/19120047. Checked 3 Nov 2015

  12. Glowalla P, Sunyaev A (2014) Prozessgetriebenes Datenqualitätsmanagement durch Integration von Datenqualität in bestehende Prozessmodelle. Anwendung von komplexitätsreduzierenden Mustern und ihr Einfluss auf Komplexitätsmetriken. Wirtschaftsinformatik 55(6):435–452. doi:10.1007/s11576-013-0391-1

    Article  Google Scholar 

  13. Gómez J (2015) Advanced planning and scheduling-system. In: Gronau N, Becker J, Kurbel K, Sinz E, Suhl, L (eds) Lehrstuhl für Wirtschaftsinformatik und Electronic Government, Universität Potsdam, Potstdam. http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/informationssysteme/crm-scm-und-electronic-business/Supply-Chain-Management/Supply-Chain-Management-System/Advanced-Planning-and-Scheduling-System

  14. Günther H-O, Tempelmeier H (2007) Produktion und Logistik, 8th edn. Springer, Berlin

    Google Scholar 

  15. Guo ZX, Ngai EWT, Yang C, Liang X (2015) An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. Int J Prod Econ 159:16–28. doi:10.1016/j.ijpe.2014.09.004

    Article  Google Scholar 

  16. Hauptvogel A (2015) “Bewertung und Gestaltung von cyber-physischer Feinplanung”. 1. Aufl. Apprimus Verlag, Aachen (Produktionssystematik, Band 6/2015)

    Google Scholar 

  17. Hildebrand K (2004) Datenqualität im Supply Chain Management. Ulm: Bonner Köllen Verlag. In: Informatik 2004 – Informatik verbindet, pp 239–243

    Google Scholar 

  18. Hodek S (2009) An approach for modular production from mechanics to decentralized control, realized in the SmartFactoryKL. In: ETFA 2009, 22–25 September 2009, Palma de Mallorca, Spain. IEEE, Piscataway. http://ieeexplore.ieee.org/servlet/opac?punumber=5340902

  19. Kapp R (2011) Ein betriebsbegleitendes Fabriksimulationssystem zur durchgängigen Unterstützung der kontinuierlichen Fabrikadaption. Univ., Diss.–Stuttgart. Heimsheim: Jost-Jetter (IPA-IAO-Forschung und Praxis, 504)

    Google Scholar 

  20. Kortuem G, Kawsar F, Fitton D, Sundramoorthy V (2010) Smart objects as building blocks for the Internet of things. IEEE Internet Comput 14(1):44–51. doi:10.1109/MIC.2009.143

    Article  Google Scholar 

  21. Lee EA (2006) Cyber-physical systems. Are computing foundations adequate? Austin

    Google Scholar 

  22. López TS, Ranasinghe DC, Patkai B, McFarlane D (2011) Taxonomy, technology and applications of smart objects. Inf Syst Front 13(2):281–300. doi:10.1007/s10796-009-9218-4

    Article  Google Scholar 

  23. Mussbach-Winter U, Wochinger T (2012) Bedeutung der Datenqualität für die Zielerreichung der Produktionsplanung und -steuerung. In: Software markt (Nr.12), p 8

    Google Scholar 

  24. Nyhuis P, Wriggers F, Fischer A (2006) Development of a decentralized logistics controlling concept. Washington (207). In: International federation of information processing (IFIP), pp 399–405

    Google Scholar 

  25. Ohlsson H, Rydell J, Brun A, Ynnerman A, Roll J, Andersson M, Knutsson H (2008) Enabling bio-feedback using real-time fMRI. In: Proceedings of IEEE conference on decision and control

    Google Scholar 

  26. Olson JE (2003) Data quality. The accuracy dimension. San Francisco, Calif. Morgan Kaufmann, Oxford. Elsevier Science (The Morgan Kaufmann Series in Data Management Systems Ser)

    Google Scholar 

  27. Reuter C, Brambring F, Hempel T (2015) Approach of information provision for high resolution production control. In: Chiu A, Matias A (eds) Operational excellence towards sustainable development goals (SDG) trough Industry 4.0. Central Book Supply, Inc., Manila

    Google Scholar 

  28. Schuh G (2005) Produktkomplexität managen. Strategien—Methoden—Tools. Hanser, München

    Book  Google Scholar 

  29. Schuh G, Lödding H, Stich V, Reuter C, Schmidt O, Potente T, Franzkoch B (2011) Wettbewerbsfaktor Produktionstechnik. Aachener Perspektiven; [AWK, Aachener Werkzeugmaschinen-Kolloquium 2011, 26. bis 27. Mai; Tagungsband]. Apprrimus, Aachen

    Google Scholar 

  30. Schuh G, Potente T, Hauptvogel A (2013) Cyber-physische Feinplanung. Hochauflösende Produktionssteuerung auf Basis kybernetischer Unterstützungssysteme (103). wt Werkstattstechnik—Online 4:336–339

    Google Scholar 

  31. Schuh G, Potente T, Thomas C, Brambring F (2013) Improving data integrity in production control. Procedia CIRP 9:44–48. doi:10.1016/j.procir.2013.06.166

    Article  Google Scholar 

  32. Schuh G, Potente T, Thomas C, Luckert M (2014) Interactive analysis and evaluation of production control

    Google Scholar 

  33. Schuh G, Potente T, Thomas C, Hauptvogel A (2014) Proceedings of the 47th CIRP conference on manufacturing systems methodology for the evaluation of forecast reliability of production planning systems

    Google Scholar 

  34. Schuh G, Reuter C, Brambring F (2014) Improving scheduling accuracy by reducing data inconsistencies in production control. In: Narayanan S (ed) Online proceedings of the 25th annual conference of the production and operations management society reaching new heights. POMS, East Lansing

    Google Scholar 

  35. Schuh G, Reuter C, Hauptvogel A, Brambring F, Hempel T, Rapp C, Stimming C (2015) Ergebnisbericht des BMBF-Verbundprojektes ProSense. Hochauflösende Produktionssteuerung auf Basis kybernetischer Unterstützungssysteme und intelligenter Sensorik. Apprimus Verlag

    Google Scholar 

  36. Schuh G, Stich V (2011) Produktion am Standort Deutschland. Ergebnisse der Untersuchung 2013. Ausgabe 2013

    Google Scholar 

  37. Schuh G, Stich V (2012) Produktionsplanung und -steuerung. Grundlagen der PPS. 4, überarbeitete edn. Springer, Berlin

    Google Scholar 

  38. Schuh G, Stich V, Nyhuis P, Ortlinghaus P, Franzkoch B, Tröger K, Hering N, Potente T, Hempel T, Schiemann D (2014) Cyber physical production control. In: Integrative Produktion: Industrie 4.0—Aachener Perspektiven, pp 121–141

    Google Scholar 

  39. Selke C (2005) Entwicklung von Methoden zur automatischen Simulationsmodellgenerierung. Techn. Univ., Diss.–München, 2005. München: Utz (Forschungsberichte iwb/Institut für Werkzeugmaschinen und Betriebswissenschaften der Technischen Universität München, 193)

    Google Scholar 

  40. St. Galler Tagblatt AG (2010) Intellion vernetzt den Alltag—St.Galler Tagblatt Online. St.Galler Tagblatt AG; Internet Tagblatt Medien. http://www.tagblatt.ch/aktuell/wirtschaft/tb-wi/Intellion-vernetzt-den-Alltag;art149,1663076. Updated 29 Dec 2010, Checked 3 Nov 2015

  41. Stadtler H, Kilger C (eds) (2000) Supply chain management and advanced planning. Concepts, models, software and case studies. Springer, Heidelberg

    Google Scholar 

  42. Stich V, Blum M (2015) A cybernetic reference model for production systems using the viable system model. In: Umeda S, Nakano M, Mizuyama H, Hibino N, Kiritsis D, von Cieminski G (eds) Advances in production management systems: innovative production management towards sustainable growth. IFIP Advances in Information and Communication Technology, vol 459. Springer International Publishing, Cham, pp 169–176

    Google Scholar 

  43. Turner S (2014) Office of policy federal highway administration. Defining and measuring traffic data quality. http://ntl.bts.gov/lib/jpodocs/repts_te/13767.html. Checked 3 Nov 2015

  44. Vahrenkamp R (2007) Logistik. Management und Strategien. 6., überarb. und erw. Aufl. München, Wien: Oldenbourg

    Google Scholar 

  45. VDI 5600 (2007) Fertigungsmanagementsysteme: Beuth Verlag (VDI 5600), p Blatt 1

    Google Scholar 

  46. Wang L, Nee AYC (2009) Collaborative design and planning for digital manufacturing. Springer, London

    Book  Google Scholar 

  47. Wang RY, Strong D (1996) Beyond accuracy: what data quality means to data customers. J Manag Inf Syst 12(4):5–34

    Article  Google Scholar 

  48. Westkämper E, Zahn E (2009) Wandlungsfähige Produktionsunternehmen. Springer, Berlin

    Book  Google Scholar 

  49. wetter.com GmbH (2015) Wetterwecker für iPhone & iPad. Ihre Wetter-App von wetter.com. http://www.wetter.com/apps_und_mehr/wetter_apps/iphone/wetterwecker/. Checked 3 Nov 2015

  50. Windt K (2013) Robust manufacturing control. In: Proceedings of the CIRP sponsored conference RoMaC 2012, Bremen, Germany, 18–20th June 2012. Lecture notes in production engineering. Springer, Berlin

    Google Scholar 

  51. Würth (2015) iBin Bestände im Blick—Der erste intelligente Behälter. Würth Group. http://www.wurth-industry.be/web/de/wuerthindustrie/cteile_management/kanban/ibin_intelligenterbehaelter/ibin.php

  52. Zäh MF, Ostgathe M, Wiesbeck M (2010) Ganzheitliches Datenmodell für kognitive Produktionssysteme. WF Zeitschrift für wirtschaftlichen Fabrikbetrieb 105(4):309–315

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hempel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schuh, A.G. et al. (2017). Cyber Physical Production Control. In: Jeschke, S., Brecher, C., Song, H., Rawat, D. (eds) Industrial Internet of Things. Springer Series in Wireless Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42559-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42559-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42558-0

  • Online ISBN: 978-3-319-42559-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics