Skip to main content

Certificateless Key-Insulated Encryption: Cryptographic Primitive for Achieving Key-Escrow Free and Key-Exposure Resilience

  • Conference paper
  • First Online:
Big Data Computing and Communications (BigCom 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9784))

Included in the following conference series:

Abstract

Certificateless encryption (CLE) alleviates the heavy certificate management in traditional public key encryption and the key escrow problem in the ID-based encryption simultaneously. Current CLE schemes assumed that the user’s secret key is absolutely secure. Unfortunately, this assumption is too strong in case the CLE is deployed in the hostile setting and the leakage of a secret key is inevitable. In this paper, we present a new concept called a certificateless key-insulated encryption scheme (CL-KIE). We argue that this is an important cryptographic primitive that can be used to achieve key-escrow free and key-exposure resilience. We also present an efficient CL-KIE scheme based on bilinear pairing. After that, the security of our scheme is proved under the Bilinear Diffie-Hellman assumption in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Youngblood, C.: An Introduction to Identity-Based Cryptography. CSEP 590TU (2005)

    Google Scholar 

  2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 65. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless encryption schemes strongly secure in the standard model. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 344–359. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Libert, B., Quisquater, J.-J.: On constructing certificateless cryptosystems from identity based encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Liu, J.K., Au, M.H., Susilo, W.: Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model. In: Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security (ASIACCS 2007), pp. 302–311. ACM, New York (2007)

    Google Scholar 

  8. Sun, Y., Li, H.: Short-ciphertext and BDH-based CCA2 secure certificateless encryption. Sci. China Inf. Sci. 53(10), 2005–2015 (2010)

    Article  MathSciNet  Google Scholar 

  9. Yang, W., Zhang, F., Shen, L.: Efficient certificateless encryption withstanding attacks from malicious KGC without using random oracles. Secur. Commun. Netw. 7(2), 445–454 (2014)

    Article  Google Scholar 

  10. Bellare, M., Palacio, A.: Protecting against key exposure: strongly key-insulated encryption with optimal threshold. Appl. Algebra Eng. Commun. Comput. 16(6), 379–396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsu, C., Lin, H.: An identity-based key-insulated encryption with message linkages for peer-to-peer communication network. TIIS 7(11), 2928–2940 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Unconditionally secure key insulated cryptosystems: models, bounds and constructions. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 85–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Qiu, W., Zhou, Y., Zhu, B., Zheng, Y., Wen, M., Gong, Z.: Key-insulated encryption based key pre-distribution scheme for WSN. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 200–209. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Rivestm, L.R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  16. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61003230, Grant 61370026, Grant 61133016 and Grant 61202445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

He, L., Yuan, C., Xiong, H., Qin, Z. (2016). Certificateless Key-Insulated Encryption: Cryptographic Primitive for Achieving Key-Escrow Free and Key-Exposure Resilience. In: Wang, Y., Yu, G., Zhang, Y., Han, Z., Wang, G. (eds) Big Data Computing and Communications. BigCom 2016. Lecture Notes in Computer Science(), vol 9784. Springer, Cham. https://doi.org/10.1007/978-3-319-42553-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42553-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42552-8

  • Online ISBN: 978-3-319-42553-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics