Skip to main content

Intestinal Failure in Children

  • Chapter
  • First Online:
Current Concepts of Intestinal Failure

Abstract

Intestinal failure (IF) is a condition in which severe intestinal malabsorption requires parenteral nutrition (PN). Causes of protracted intestinal failure include short bowel syndrome (SBS), congenital diseases of enterocyte development (CDED), and severe motility disorders (total or subtotal aganglionosis or chronic intestinal pseudo-obstruction syndrome). IF can result in “nutritional failure,” defined as the incapacity to continue to feed a child by using PN. Today, intestinal failure-associated liver disease (IFALD) is the most common cause of nutritional failure, but catheter-related sepsis and extensive vascular thrombosis may also jeopardize the use of long-term PN. For a child with nutritional failure, intestinal transplantation (ITx), often in the form of a composite visceral graft, offers the only option for long-term survival. The management of IF requires a multidisciplinary approach. There have been a number of recent advances in both medical and surgical treatments of IF. In particular, new intestinal lengthening techniques and the use of parenteral nutrition formula rich in fish oil have both resulted in decreased rates of severe complications of IF and its treatment. In addition, improved awareness of the risks and benefits of ITx have resulted in better patient selection, and ultimately in improved patient survival, leading to restrict the indication to ITx only to patients with nutritional failure with no other chance to survive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AABF:

Amino acid-based formulas

CRS:

Catheter-related sepsis

CLD:

Cholestatic liver disease

CIPOS:

Chronic intestinal pseudo-obstruction syndrome

(CSD):

Congenital sodium diarrhea

CDED:

Congenital diseases of enterocyte development

CTF:

Continuous tube feeding

ETF:

Enteral tube feeding

EGF:

Epidermal growth factor

EFA:

Essential fatty acid

GI:

Gastrointestinal

GLP-2:

Glucagon-like peptide 2

HM:

Human milk

ICV:

Ileocecal valve

IGF-1:

Insulin-like growth factor-1

IF:

Intestinal failure

IFALD:

Intestinal failure-associated liver disease

ITx:

Intestinal transplantation

ILE:

Intravenous lipid emulsions

LOT:

Ligament of Treitz

LILT:

Longitudinal intestinal lengthening and tailoring

MCT:

Medium-chain triglyceride

MVID:

Microvillus inclusion disease

OF:

Oral feeding

PN:

Parenteral nutrition

PUFA:

Polyunsaturated fatty acid

rhGH:

Recombinant human growth hormone

STEP:

Serial transverse enteroplasty technique

SBS:

Short bowel syndrome

SCFA:

Short-chain fatty acid

SIBO:

Small intestinal bacterial overgrowth

TIA:

Total intestinal aganglionosis

TE:

Tufting enteropathy

References

  1. Goulet O, Ruemmele F. Causes and management of intestinal failure in children. Gastroenterology. 2006;130(2 Suppl 1):S16–28.

    Article  CAS  PubMed  Google Scholar 

  2. Bailly-Botuha C, Colomb V, Thioulouse E, et al. Plasma citrulline concentration reflects enterocyte mass in children with short bowel syndrome. Pediatr Res. 2009;65:559–63.

    Article  PubMed  Google Scholar 

  3. Kaufman SS, Pehlivanova M, Fennelly EM, et al. Predicting liver failure in parenteral nutrition-dependent short bowel syndrome of infancy. J Pediatr. 2010;156:580–5.

    Article  PubMed  Google Scholar 

  4. Suita S, Yamanouchi T, Masumoto K, Ogita K, Nakamura M, Taguchi S. Changing profile of parenteral nutrition in pediatric surgery: a 30-year experience at one institute. Surgery. 2002;131(1 Suppl):S275–82.

    Article  PubMed  Google Scholar 

  5. Hermans D, Talbotec C, Lacaille F, Goulet O, Ricour C, Colomb V. Early central catheter infections may contribute to hepatic fibrosis in children receiving long-term parenteral nutrition. J Pediatr Gastroenterol Nutr. 2007;44:459–63.

    Article  PubMed  Google Scholar 

  6. D’Antiga L, Goulet O. Intestinal failure in children: the European view. J Pediatr Gastroenterol Nutr. 2013;56:118–26.

    Article  PubMed  Google Scholar 

  7. Duro D, Kalish LA, Johnston P, et al. Risk factors for intestinal failure in infants with necrotizing enterocolitis: a Glaser Pediatric Research Network study. J Pediatr. 2010;157:203–208.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Touloukian RJ, Smith GJ. Normal intestinal length in preterm infants. J Pediatr Surg. 1983;18:720–3.

    Article  CAS  PubMed  Google Scholar 

  9. Quiros-Tejeira RE, Ament ME, Reyen L, et al. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr. 2004;145:157–63.

    Article  PubMed  Google Scholar 

  10. Spencer AU, Neaga A, West B, et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg. 2005;242:403–9.

    PubMed  PubMed Central  Google Scholar 

  11. Sala D, Chomto S, Hill S. Long-term outcomes of short bowel syndrome requiring long-term/home intravenous nutrition compared in children with gastroschisis and those with volvulus. Transplant Proc. 2010;42:5–8.

    Article  CAS  PubMed  Google Scholar 

  12. Goulet O, Baglin-Gobet S, Talbotec C, et al. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg. 2005;15:95–101.

    Article  CAS  PubMed  Google Scholar 

  13. Wales PW, Christison-Lagay ER. Short bowel syndrome: epidemiology and etiology. Semin Pediatr Surg. 2010;19:3–9.

    Article  PubMed  Google Scholar 

  14. Goulet O, Olieman J, Ksiazyk J, Spolidoro J, Tibboe D, Köhler H, Yagci RV, Falconer J, Grimble G, Beattie RM. Neonatal short bowel syndrome as a model of intestinal failure: physiological background for enteral feeding. Clin Nutr. 2013;32:162–71.

    Article  CAS  PubMed  Google Scholar 

  15. Parvadia JK, Keswani SG, Vaikunth S, et al. Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent. Am J Physiol Gastrointest Liver Physiol. 2007;293:G591–8.

    Article  CAS  PubMed  Google Scholar 

  16. Helmrath MA, Shin CE, Fox JW, et al. Adaptation after small bowel resection is attenuated by sialoadenectomy: the role for endogenous epidermal growth factor. Surgery. 1998;124:848–54.

    Article  CAS  PubMed  Google Scholar 

  17. Olieman JF, Penning C, Ijsselstijn H, et al. Enteral nutrition in children with short-bowel syndrome: current evidence and recommendations for the clinician. J Am Diet Assoc. 2010;110:420–6.

    Article  PubMed  Google Scholar 

  18. Donovan SM. Role of human milk components in gastrointestinal development: current knowledge and future Needs. J Pediatr. 2006;149:S49–61.

    Article  CAS  Google Scholar 

  19. Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut. 2002;51:748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Boissieu D, Dupont C. Allergy to extensively hydrolyzed cow's milk proteins in infants: safety and duration of amino acid-based formula. J Pediatr. 2002;141:271–3.

    Article  PubMed  Google Scholar 

  21. Andorsky DJ, Lund DP, Lillehei CW, et al. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr. 2001;139:27–33.

    Article  CAS  PubMed  Google Scholar 

  22. Bines J, Francis D, Hill D. Reducing parenteral requirement in children with short bowel syndrome: impact of an amino acid-based complete infant formula. J Pediatr Gastroenterol Nutr. 1998;26:123–8.

    Article  CAS  PubMed  Google Scholar 

  23. De Greef E, Mahler T, Janssen A, et al. The influence of neocate in paediatric short Bowel syndrome on PN weaning. J Nutr Metab. 2010;2010. pii: 297575.

    Google Scholar 

  24. Goulet O, Colomb-Jung V, Joly F. Role of the colon in short bowel syndrome and intestinal transplantation. J Pediatr Gastroenterol Nutr. 2009;48 Suppl 2:S66–71.

    Article  PubMed  Google Scholar 

  25. Gupte GL, Beath SV, Kelly DA, et al. Current issues in the management of intestinal failure. Arch Dis Child. 2006;91:259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats. Gastroenterology. 1997;112:792–802.

    Article  CAS  PubMed  Google Scholar 

  27. Bartholome AL, Albin DM, Baker DH, Holst JJ, Tappenden KA. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets. JPEN J Parenter Enteral Nutr. 2004;28:210–22.

    Article  CAS  PubMed  Google Scholar 

  28. Koruda MJ, Rolandelli RH, Settle RG, Zimmaro DM, Rombeau JL. Effect of parenteral nutrition supplemented with short-chain fatty acids on adaptation to massive small bowel resection. Gastroenterology. 1988;95:715–20.

    Article  CAS  PubMed  Google Scholar 

  29. Nordgaard I, Hansen BS, Mortensen PB. Colon as a digestive organ in patients with short bowel. Lancet. 1994;343:373–6.

    Article  CAS  PubMed  Google Scholar 

  30. Joly F, Mayeur C, Messing B, Lavergne-Slove A, Cazals-Hatem D, Noordine ML, et al. Morphological adaptation with preserved proliferation/transporter content in the colon of patients with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2009;297:G116–23.

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko T, Bando Y, Kurihara H, Satomi K, Nonoyama K, Matsuura N. Fecal microflora in a patient with short-bowel syndrome and identification of dominant lactobacilli. J Clin Microbiol. 1997;35:3181–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J. The fecal microbiome in pediatric patients with short Bowel syndrome. JPEN J Parenter Enteral Nutr. 2015. pii: 0148607115591216.

    Google Scholar 

  33. Engstrand Lilja H, Wefer H, Nyström N, Finkel Y, Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015;3:18. doi:10.1186/s40168-015-0084-7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wales PW, de Silva N, Kim JH, Lecce L, Sandhu A, Moore AM. Neonatal short bowel syndrome: a cohort study. J Pediatr Surg. 2005;40:755–62.

    Article  PubMed  Google Scholar 

  35. Olieman JF, Poley MJ, Gischler SJ, Penning C, Escher JC, van den Hoonaard TL, van Goudoever JB, Bax NM, Tibboel D, IJsselstijn H. Interdisciplinary management of infantile short bowel syndrome: resource consumption, growth, and nutrition. J Pediatr Surg. 2010;45:490–8.

    Article  PubMed  Google Scholar 

  36. Husebye E. The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol Motil. 1999;11:141–61.

    Article  CAS  PubMed  Google Scholar 

  37. Cole CR, Ziegler TR. Small bowel bacterial overgrowth: a negative factor in gut adaptation in pediatric SBS. Curr Gastroenterol Rep. 2007;9:456–62.

    Article  PubMed  Google Scholar 

  38. O'Keefe SJ. Bacterial overgrowth and liver complications in short bowel intestinal failure patients. Gastroenterology. 2006;130(2 Suppl 1):S67–9.

    Article  PubMed  Google Scholar 

  39. Quigley EM. Bacteria: a new player in gastrointestinal motility disorders–infections, bacterial overgrowth, and probiotics. Gastroenterol Clin North Am. 2007;36:735–4.

    Article  PubMed  Google Scholar 

  40. Willis TC, Carter BA, Rogers SP, Hawthorne KM, Hicks PD, Abrams SA. High rates of mortality and morbidity occur in infants with parenteral nutrition-associated cholestasis. JPEN J Parenter Enteral Nutr. 2010;34:32–7. Comment in: JPEN J Parenter Enteral Nutr. 2010;34:94–5.

    Google Scholar 

  41. Cole CR, Frem JC, Schmotzer B, et al. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr. 2010;156:941–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moseley RH. Sepsis and cholestasis. Clin Liver Dis. 2004;8:83–94.

    Article  PubMed  Google Scholar 

  43. Santos AA, Wilmore DW. The systemic inflammatory response: perspective of human endotoxemia. Shock. 1996;6 Suppl 1:S50–6.

    Article  PubMed  Google Scholar 

  44. Pastor CM, Suter PM. Hepatic hemodynamics and cell functions in human and experimental sepsis. Anesth Analg. 1999;89:344–52.

    CAS  PubMed  Google Scholar 

  45. Jones A, Selby PJ, Viner C, Hobbs S, Gore ME, McElwain TJ. Tumour necrosis factor, cholestatic jaundice, and chronic liver disease. Gut. 1990;31:938–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petersen C. D-lactic acidosis. Nutr Clin Pract. 2005;20:634–45.

    Article  PubMed  Google Scholar 

  47. Kadakia SC. D-lactic acidosis in a patient with jejunoileal bypass. J Clin Gastroenterol. 1995;20:154–6.

    Article  CAS  PubMed  Google Scholar 

  48. From the Centers for Disease Control and Prevention. Lactic acidosis traced to thiamine deficiency related to nationwide shortage of multivitamins for total parenteral nutrition–United States, 1997. JAMA. 1997;278:109–11.

    Google Scholar 

  49. Mayeur C, Gratadoux JJ, Bridonneau C, Chegdani F, Larroque B, Kapel N, Corcos O, Thomas M, Joly F. Faecal D/L lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS One. 2013;8(1):e54335. doi:10.1371/journal.pone.0054335. Epub 2013 Jan 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi K, Terashima H, Kohno K, Ohkohchi N. A stand-alone synbiotic treatment for the prevention of D-lactic acidosis in short bowel syndrome. Int Surg. 2013;98:110–3.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Seguy D, Vahedi K, Kapel N, et al. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology. 2003;124:293–02.

    Article  CAS  PubMed  Google Scholar 

  52. Peretti N, Loras-Duclaux I, Kassai B, et al. Growth hormone to improve short bowel syndrome intestinal autonomy: a pediatric randomized open-label clinical trial. J Parenter Enteral Nutr. 2011;35:723–31.

    Article  CAS  Google Scholar 

  53. Yang H, Teitelbaum DH. Novel agents in the treatment of intestinal failure: humoral factors. Gastroenterology. 2006;130(2 Suppl 1):S117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goulet O, Dabbas-Tyan M, Talbotec C, et al. Effect of recombinant human growth hormone on intestinal absorption and body composition in children with short bowel syndrome. J Parenter Enteral Nutr. 2010;34:513–20.

    Article  CAS  Google Scholar 

  55. Wales PW, Nasr A, de Silva N, et al. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst Rev. 2010;(6):CD006321.

    Google Scholar 

  56. Jeppesen PB. Gut hormones in the treatment of short-bowel syndrome and intestinal failure. Curr Opin Endocrinol Diabetes Obes. 2015;22:14–20.

    Article  CAS  PubMed  Google Scholar 

  57. Jeppesen PB, Gilroy R, Pertkiewicz M, et al. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60:902–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilhelm SM, Lipari M, Kulik JK, Kale-Pradhan PB. Teduglutide for the treatment of short bowel syndrome. Ann Pharmacother. 2014;48(9):1209–13.

    Article  CAS  PubMed  Google Scholar 

  59. Ben Lulu S, Coran AG, Shehadeh N, Shamir R, Mogilner JG, Sukhotnik I. Oral insulin stimulates intestinal epithelial cell turnover following massive small bowel resection in a rat and a cell culture model. Pediatr Surg Int. 2012;28:179–87.

    Article  PubMed  Google Scholar 

  60. Shamir R, Kolacek S, Koletzko S, Tavori I, Bader D, Litmanovitz I, Flidel-Rimon O, Marks KA, Sukhotnik I, Shehadeh N. Oral insulin supplementation in paediatric short bowel disease: a pilot observational study. J Pediatr Gastroenterol Nutr. 2009;49:108–11.

    Article  CAS  PubMed  Google Scholar 

  61. Hamer HM, Jonkers DM, Bast A, et al. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr. 2009;28:88–93.

    Article  CAS  PubMed  Google Scholar 

  62. McMellen ME, Wakeman D, Longshore SW, et al. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg. 2010;19:35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Thompson J, Sudan D. Intestinal lengthening for short bowel syndrome. Adv Surg. 2008;42:49–61.

    Article  PubMed  Google Scholar 

  64. Modi BP, Javid PJ, Jaksic T, et al.; International STEP Data Registry. First report of the international serial transverse enteroplasty data registry: indications, efficacy, and complications. J Am Coll Surg. 2007;204:365–7.

    Google Scholar 

  65. Sudan D, Thompson J, Botha J, et al. Comparison of intestinal lengthening procedures for patients with short bowel syndrome. Ann Surg. 2007;246:593–601.

    Article  PubMed  Google Scholar 

  66. Bianchi A, Morabito A. The dilated bowel: a liability and an asset. Semin Pediatr Surg. 2009;18:249–57.

    Article  CAS  PubMed  Google Scholar 

  67. Oliveira C, de Silva N, Wales PW. Five-year outcomes after serial transverse enteroplasty in children with short bowel syndrome. J Pediatr Surg. 2012;47:931–7.

    Article  PubMed  Google Scholar 

  68. Goulet OJ, Brousse N, Canioni D, et al. Syndrome of intractable diarrhoea with persistent villous atrophy in early childhood: a clinicopathological survey of 47 cases. J Pediatr Gastroenterol Nutr. 1998;26:151–61.

    Article  CAS  PubMed  Google Scholar 

  69. Canani RB, Castaldo G, Bacchetta R, Martín MG, Goulet O. Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies. Nat Rev Gastroenterol Hepatol. 2015;12:293–302.

    Article  CAS  PubMed  Google Scholar 

  70. Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, Ponstingl H, Partsch J, Röllinghoff B, Köhler H, Berger T, Lenhartz H, Schlenck B, Houwen RJ, Taylor CJ, Zoller H, Lechner S, Goulet O, Utermann G, Ruemmele FM, Huber LA, Janecke AR. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40:1163–5.

    Article  CAS  PubMed  Google Scholar 

  71. Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, Sauvat F, Irtan S, Davit-Spraul A, Jacquemin E, Ruemmele F, Rainteau D, Goulet O, Colomb V, Chardot C, Henrion-Caude A, Debray D. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology. 2014;60:301–10.

    Article  CAS  PubMed  Google Scholar 

  72. Halac U, Lacaille F, Joly F, et al. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011;52:460–5.

    Article  PubMed  Google Scholar 

  73. Goulet O, Salomon J, Ruemmele F, et al. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2007;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, Coulomb A, Marinier E, Hugot JP, Ruemmele F, Dufier JL, Roche O, Bodemer C, Colomb V, Talbotec C, Lacaille F, Campeotto F, Cerf-Bensussan N, Janecke AR, Mueller T, Koletzko S, Bonnefont JP, Lyonnet S, Munnich A, Poirier F, Smahi A. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133:299–310.

    Article  CAS  PubMed  Google Scholar 

  75. Salomon J, Espinosa-Parrilla Y, Goulet O, et al. A founder effect at the EPCAM locus in congenital tufting enteropathy in the arabic gulf. Eur J Med Genet. 2011;54:319–22.

    Article  PubMed  Google Scholar 

  76. Lemale J, Coulomb A, Dubern B, et al. Intractable diarrhea with tufting enteropathy: a favorable outcome is possible. J Pediatr Gastroenterol Nutr. 2011;52:734–9.

    Article  PubMed  Google Scholar 

  77. Heinz-Erian P, Müller T, Krabichler B, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 2009;84:188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, et al. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet. 2015; pii: ddv367.

    Google Scholar 

  79. Müller T, Rasool I, Heinz-Erian P, Mildenberger E, Hülstrunk C, Müller A, et al. Congenital secretory diarrhoea caused by activating germline mutations Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut. 2015. pii: gutjnl-2015-309441. doi:10.1136/gutjnl-2015-309441.

    Google Scholar 

  80. Goulet O, Vinson C, Roquelaure B, et al. Syndromic (phenotypic) diarrhea in early infancy. Orphanet J Rare Dis. 2008;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fabre A, Martinez-Vinson C, Roquelaure B, et al. Novel mutations in TTC37 associated with tricho-hepato-enteric syndrome. Hum Mutat. 2011;32:277–81.

    Article  CAS  PubMed  Google Scholar 

  82. Fabre A, Charroux B, Martinez-Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012;90:689–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J Rare Dis. 2013;8:5. doi:10.1186/1750-1172-8-5.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kimura O, Ono S, Furukawa T, Higuchi K, Deguchi E, Iwai N. Management strategies for infants with total intestinal aganglionosis. J Pediatr Surg. 2009;44:1564–7.

    Article  PubMed  Google Scholar 

  85. Sauvat F, Grimaldi C, Lacaille F, Ruemmele F, Dupic L, Bourdaud N, Fusaro F, Colomb V, Jan D, Cezard JP, Aigrain Y, Revillon Y, Goulet O. Intestinal transplantation for total intestinal aganglionosis: a series of 12 consecutive children. J Pediatr Surg. 2008;43:1833–8.

    Article  PubMed  Google Scholar 

  86. Goulet O, Sauvat F, Jan D. Surgery for pediatric patients with chronic intestinal pseudo-obstruction syndrome. J Pediatr Gastroenterol Nutr. 2005;41 Suppl 1:S66–8.

    Article  PubMed  Google Scholar 

  87. Lapointe SP, Rivet C, Goulet O, et al. Urological manifestations associated with chronic intestinal pseudo-obstructions in children. J Urol. 2002;168:1768–70.

    Article  PubMed  Google Scholar 

  88. Galmiche L, Jaubert F, Sauvat F, et al. Normal oxidative phosphorylation in intestinal smooth muscle of childhood chronic intestinal pseudo-obstruction. Neurogastroenterol Motil. 2011;23:24–9.

    Article  CAS  PubMed  Google Scholar 

  89. Roper EC, Gibson A, McAlindon ME, et al. Familial visceral neuropathy: a defined entity? Am J Med Genet. 2005;137:249–54.

    Article  Google Scholar 

  90. Tanner MS, Smith B, Lloyd JK. Functional intestinal obstruction due to deficiency of argyrophil neurones in the myenteric plexus. Familial syndrome presenting with short small bowel, malrotation, and pyloric hypertrophy. Arch Dis Child. 1976;51:837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Auricchio A, Brancolini V, Casari G, et al. The locus for a novel syndromic form of neuronal intestinal pseudoobstruction maps to Xq28. Am J Hum Genet. 1996;58:743–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. FitzPatrick DR, Strain L, Thomas AE, et al. Neurogenic chronic idiopathic intestinal pseudo-obstruction, patent ductus arteriosus, and thrombocytopenia segregating as an X-linked recessive disorder. J Med Genet. 1997;34:666–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gargiulo A, Auricchio R, Barone MV, Cotugno G, Reardon W, Milla PJ, et al. Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet. 2007;80:751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kapur RP, Robertson SP, Hannibal MC, Finn LS, Morgan T, van Kogelenberg M, Loren DJ. Diffuse abnormal layering of small intestinal smooth muscle is present in patients with FLNA mutations and x-linked intestinal pseudo-obstruction. Am J Surg Pathol. 2010;34:1528–43.

    Article  PubMed  Google Scholar 

  95. Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science. 1999;283:689–92.

    Article  CAS  PubMed  Google Scholar 

  96. Van Goethem G, Schwartz M, Lofgren A, Dermaut B, Van Broeckhoven C, Vissing J. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet. 2003;11:547–9.

    Article  CAS  PubMed  Google Scholar 

  97. Pingault V, Girard M, Bondurand N, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002;111:198–206.

    Article  CAS  PubMed  Google Scholar 

  98. Abell TL, Camilleri M, Donohoe K, et al. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. Am J Gastroenterol. 2008;103:753–63.

    Article  PubMed  Google Scholar 

  99. Lapointe R. Chronic idiopathic intestinal pseudo-obstruction treated by near total small bowel resection: a 20-year experience. J Gastrointest Surg. 2010;14:1937–42.

    Article  PubMed  Google Scholar 

  100. Goulet O, Talbotec C, Jan D, et al. Nutritional management of pediatric patients with chronic intestinal pseudo-obstruction syndrome. J Pediatr Gastroenterol Nutr. 2001;32 Suppl 1:S44–7.

    Article  PubMed  Google Scholar 

  101. Di Lorenzo C, Youssef NN. Diagnosis and management of intestinal motility disorders. Semin Pediatr Surg. 2010;19:50–8.

    Article  PubMed  Google Scholar 

  102. Gmora S, Poenaru D, Tsai E. Neostigmine for the treatment of pediatric acute colonic pseudo-obstruction. J Pediatr Surg. 2002;37:E28.

    Article  PubMed  Google Scholar 

  103. Faure C, Goulet O, Ategbo S, et al. Chronic intestinal pseudoobstruction syndrome: clinical analysis, outcome, and prognosis in 105 children. French-Speaking Group of Pediatric Gastroenterology. Dig Dis Sci. 1999;44:953–9.

    Article  CAS  PubMed  Google Scholar 

  104. De Giorgio R, Cogliandro RF, Barbara G, et al. Chronic intestinal pseudo-obstruction: clinical features, diagnosis, and therapy. Gastroenterol Clin North Am. 2011;40:787–807.

    Article  PubMed  Google Scholar 

  105. Abu-Elmagd K. The concept of gut rehabilitation and the future of visceral transplantation. Nat Rev Gastroenterol Hepatol. 2015;12:108–20.

    Article  CAS  PubMed  Google Scholar 

  106. Copple BL, Jaeschke H, Klaassen CD. Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis. 2010;30:193–202.

    Article  CAS  Google Scholar 

  107. Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 1773;2007:283–308.

    Google Scholar 

  108. Wagner M, Zollner G, Trauner M. New molecular insights into the mechanisms of cholestasis. J Hepatol. 2009;51:565–80.

    Article  CAS  PubMed  Google Scholar 

  109. Soroka CJ, Ballatori N, Boyer JL. Organic solute transporter, OSTot-OSTI3: its role in bile acid transport and cholestasis. Semin Liver Dis. 2010;30:176–83.

    Article  CAS  Google Scholar 

  110. Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis. 2010;30(2):123–31.

    Article  CAS  Google Scholar 

  111. Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin Liver Dis. 2010;30(2):158–75.

    Article  CAS  Google Scholar 

  112. Geier A, Fickert P, Trauner M. Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:574–85.

    Article  CAS  PubMed  Google Scholar 

  113. El Kasmi KC, Anderson AL, Devereaux MW, et al. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology. 2012;55:1518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cavicchi M, Beau P, Crenn P, et al. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med. 2000;132:525–32.

    Article  CAS  PubMed  Google Scholar 

  115. Colomb V, Jobert-Giraud A, Lacaille F, et al. Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. J Parenter Enteral Nutr. 2000;24:345–50.

    Article  CAS  Google Scholar 

  116. Ganousse-Mazeron S, Lacaille F, Colomb-Jung V, Talbotec C, Ruemmele F, Sauvat F, Chardot C, Canioni D, Jan D, Revillon Y, Goulet O. Assessment and outcome of children with intestinal failure referred for intestinal transplantation. Clin Nutr. 2015;34:428–35.

    Article  CAS  PubMed  Google Scholar 

  117. Koletzko B, Goulet O. Fish oil containing intravenous lipid emulsions in parenteral nutrition-associated cholestatic liver disease. Curr Opin Clin Nutr Metab Care. 2010;13:321–6.

    Article  CAS  PubMed  Google Scholar 

  118. Gura KM, Duggan CP, Collier SB, et al. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics. 2006;118:e197–201.

    Article  PubMed  Google Scholar 

  119. Linseisen J, Hoffmann J, Lienhard S, et al. Antioxidant status of surgical patients receiving TPN with an omega-3-fatty acid-containing lipid emulsion supplemented with alpha-tocopherol. Clin Nutr. 2000;19:177–84.

    Article  CAS  PubMed  Google Scholar 

  120. Wanten G, Beunk J, Naber A, et al. Tocopherol isoforms in parenteral lipid emulsions and neutrophil activation. Clin Nutr. 2002;21:417–22.

    Article  CAS  PubMed  Google Scholar 

  121. Forchielli ML, Bersani G, Tala S, et al. The spectrum of plant and animal sterols in different oil-derived intravenous emulsions. Lipids. 2010;45:63–71.

    Article  CAS  PubMed  Google Scholar 

  122. Clayton PT, Whitfield P, Lyer K. The role of phytosterols in the pathogenesis of liver complications of pediatric parenteral nutrition. Nutrition. 1998;14:158–64.

    Article  CAS  PubMed  Google Scholar 

  123. Mertes N, Grimm H, Furst P, et al. Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical patients: a randomized, double-blind, multicenter study. Ann Nutr Metab. 2006;50:253–9.

    Article  CAS  PubMed  Google Scholar 

  124. Tomsits E, Tolgysi A, Fekete G, et al. Safety and efficacy of a lipid emulsion containing a mixture of soybean, olive, coconut and fish oils: a randomized double blind trial in premature infants requiring parenteral nutrition. J Pediatr Gastroenterol Nutr. 2010;51:514–21.

    Article  CAS  PubMed  Google Scholar 

  125. Goulet O, Antebi H, Wolf C, et al. A new intravenous fat emulsion containing fish oil: a single center, double-blind randomized study on long-term efficacy and safety in pediatric patients. J Parenter Enteral Nutr. 2010;34:485–95.

    Article  CAS  Google Scholar 

  126. Muhammed R, Bremner R, Protheroe S, Johnson T, Holden C, Murphy MS. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion. J Pediatr Gastroenterol Nutr. 2012;54:797–802.

    Article  CAS  PubMed  Google Scholar 

  127. Goulet OJ. Intestinal failure-associated liver disease and the use of fish oil-based lipid emulsions. World Rev Nutr Diet. 2015;112:90–114.

    Article  PubMed  Google Scholar 

  128. Leonberg B, Chuang E, Eicher P, Tershakovec AM, Leonard L, Stallings VA. Long-term growth and development in children after home parenteral nutrition. J Pediatr. 1998;132:461–6.

    Article  CAS  PubMed  Google Scholar 

  129. Colomb V, Dabbas-Tyan M, et al. Long-term outcome of children receiving home parenteral nutrition: a 20-year single-center experience in 302 patients. J Pediatr Gastroenterol Nutr. 2007;44:347–53.

    Article  PubMed  Google Scholar 

  130. Norman JL, Crill CM. Optimizing the transition to home parenteral nutrition in pediatric patients. Nutr Clin Pract. 2011;26:273–85.

    Article  PubMed  Google Scholar 

  131. Gandullia P, Lugani F, Costabello L, Arrigo S, Calvi A, Castellano E, Vignola S, Pistorio A, Barabino AV. Long-term home parenteral nutrition in children with chronic intestinal failure: a 15-year experience at a single Italian centre. Dig Liver Dis. 2011;43:28–33.

    Article  PubMed  Google Scholar 

  132. Wiskin A, Cole C, Owens D, Morgan M, Burge DM, Beattie RM. Ten-year experience of home parenteral nutrition in a single centre. Acta Paediatr. 2012;101:524–7.

    Article  PubMed  Google Scholar 

  133. Barclay A, Henderson P, Gowen H, Puntis J, BIFS collaborators. The continued rise of paediatric home parenteral nutrition use: implications for service and the improvement of longitudinal data collection. Clin Nutr. 2014;14:290–8.

    Google Scholar 

  134. Diamanti A, Conforti A, Panetta F, Torre G, Candusso M, Bagolan P, Papa RE, Grimaldi C, Fusaro F, Capriati T, et al. Long-term outcome of home parenteral nutrition in patients with ultra-short bowel syndrome. J Pediatr Gastroenterol Nutr. 2014;58:438–42.

    Article  CAS  PubMed  Google Scholar 

  135. Petit LM, Girard D, Ganousse-Mazeron S, Talbotec C, Pigneur B, Elie C, Corriol O, Poisson C, Goulet O, Colomb V. Weaning off prognosis factors of home parenteral nutrition for children with primary digestive disease. J Pediatr Gastroenterol Nutr. 2016;62(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  136. Pironi L, Joly F, Forbes A, Colomb V, Lyszkowska M, Baxter J, Gabe S, Hébuterne X, Gambarara M, Gottrand F, Cuerda C, Thul P, Messing B, Goulet O, Staun M, Van Gossum A, Home Artificial Nutrition & Chronic Intestinal Failure Working Group of the European Society for Clinical Nutrition and Metabolism (ESPEN). Long-term follow-up of patients on home parenteral nutrition in Europe: implications for intestinal transplantation. Gut. 2011;60:17–25.

    Article  PubMed  Google Scholar 

  137. Kim JS, Holtom P, Vigen C. Reduction of catheter-related bloodstream infections through the use of a central venous line bundle: epidemiologic and economic consequences. Am J Infect Control. 2011;39:640–6.

    Article  PubMed  Google Scholar 

  138. Marschall J, Mermel L, Fakih M, Hadaway L, Kallen A, O’Grady N, Pettis AM, Rupp ME, Sandora T, Maragakis LL, et al. Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:753–71.

    Article  PubMed  Google Scholar 

  139. Sudan D, DiBaise J, Torres C, Thompson J, Raynor S, Gilroy R, Horslen S, Grant W, Botha J, Langnas A. A multidisciplinary approach to the treatment of intestinal failure. J Gastrointest Surg. 2005;9:165–76.

    Article  PubMed  Google Scholar 

  140. Torres C, Sudan D, Vanderhoof J, Grant W, Botha J, Raynor S, Langnas A. Role of an intestinal rehabilitation program in the treatment of advanced intestinal failure. J Pediatr Gastroenterol Nutr. 2007;45:204–12.

    Article  PubMed  Google Scholar 

  141. Nucci A, Burns RC, Armah T, Lowery K, Yaworski JA, Strohm S, Bond G, Mazariegos G, Squires R. Interdisciplinary management of pediatric intestinal failure: a 10-year review of rehabilitation and transplantation. J Gastrointest Surg. 2008;12:429–35.

    Article  PubMed  Google Scholar 

  142. Sigalet D, Boctor D, Robertson M, Lam V, Brindle M, Sarkhosh K, Driedger L, Sajedi M. Improved outcomes in paediatric intestinal failure with aggressive prevention of liver disease. Eur J Pediatr Surg. 2009;19:348–53.

    Article  CAS  PubMed  Google Scholar 

  143. Cowles RA, Ventura KA, Martinez M, Lobritto SJ, Harren PA, Brodlie S, Carroll J, Jan DM. Reversal of intestinal failure-associated liver disease in infants and children on parenteral nutrition: experience with 93 patients at a referral center for intestinal rehabilitation. J Pediatr Surg. 2010;45:84–7.

    Article  PubMed  Google Scholar 

  144. Javid PJ, Malone FR, Reyes J, et al. The experience of a regional pediatric intestinal failure program: successful outcomes from intestinal rehabilitation. Am J Surg. 2010;199:676–9.

    Article  PubMed  Google Scholar 

  145. Nusinovich Y, Revenis M, Torres C. Long-term outcomes for infants with intestinal atresia studied at Children’s National Medical Center. J Pediatr Gastroenterol Nutr. 2013;57:324–9.

    Article  PubMed  Google Scholar 

  146. Beath S, Pironi L, Gabe S, et al. Collaborative strategies to reduce mortality and morbidity in patients with chronic intestinal failure including those who are referred for small bowel transplantation. Transplantation. 2008;85:1378–84.

    Article  PubMed  Google Scholar 

  147. Grant D, Abu-Elmagd K, Mazariegos G, Vianna R, Langnas A, Mangus R, Farmer DG, Lacaille F, Iyer K, Fishbein T, Intestinal Transplant Association. Intestinal transplant registry report: global activity and trends. Am J Transplant. 2015;15:210–9.

    Article  CAS  PubMed  Google Scholar 

  148. Pironi L, Forbes A, Joly F, et al. Survival of patients identified as candidates for intestinal transplantation: a 3-year prospective follow-up. Gastroenterology. 2008;135:61e71.

    Article  Google Scholar 

  149. Pironi L, Goulet O, Buchman A, et al.; Home Artificial Nutrition and Chronic Intestinal Failure Working Group of ESPEN. Outcome on home parenteral nutrition for benign intestinal failure: a review of the literature and benchmarking with the European prospective survey of ESPEN. Clin Nutr. 2012;31:831–45.

    Google Scholar 

  150. Pironi L, Joly F, Forbes A, et al. Long-term follow-up of patients on home parenteral nutrition in Europe: implications for intestinal transplantation. Gut. 2011;60:17–25.

    Article  PubMed  Google Scholar 

  151. Taha AM, Sharif K, Johnson T, Clarke S, Murphy MS, Gupte GL. Long-term outcomes of isolated liver transplantation for short bowel syndrome and intestinal failure-associated liver disease. J Pediatr Gastroenterol Nutr. 2012;54:547–51.

    Article  CAS  PubMed  Google Scholar 

  152. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41 Suppl 2:S1–87.

    Article  PubMed  Google Scholar 

  153. Wales P, Allen N, Worthington P, George D, Compher C, the American Society for Parenteral and Enteral Nutrition, Teitelbaum D. A.S.P.E.N. Clinical guidelines: support of pediatric patients with intestinal failure at risk of parenteral nutrition-associated liver disease. J Parenter Enteral Nutr. 2014;38:538–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Goulet MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goulet, O., Lacaille, F., Lambe, C. (2016). Intestinal Failure in Children. In: Rintala, R., Pakarinen, M., Wester, T. (eds) Current Concepts of Intestinal Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-42551-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42551-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42549-8

  • Online ISBN: 978-3-319-42551-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics