Skip to main content

Piezoelectric Transformers

  • Chapter
  • First Online:
Piezoelectric Ceramic Resonators

Abstract

Piezoelectric ceramic resonators with divided electrode used for the piezoelectric transformation are reviewed in details for various resonator shapes, electrode pattern, poling direction, bulk and multilayer geometry. Piezoelectric transformers of bar, plate, disc, and ring shapes are analytically modeled by the immittance method for one-dimensional vibration modes as a function of dimensions, material properties of ceramics, frequency, and impedance load. Numerical examples of transformer parameter calculation including electrode pattern optimization are presented. Comprehensive list of literature references on piezoelectric transformers is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berlincourt DA (1973) Piezoelectric starter and ballast for gaseous discharge lamps, U.S. patent 3,764,848 (1973), 9 Oct 1973

    Google Scholar 

  • Berlincourt DA, Sliker LS (1973) Piezoelectric transformer. U.S. Patent 3,736,446, 29 May 1973

    Google Scholar 

  • Bove T, Wolny W, Ringgaard E, Breboel K (2000) New type of piezoelectric transformer with very high power density. Proc. IEEE ISAF 1:321–324

    Google Scholar 

  • Chung HW, Lim SH, Kim GH, Li DH, Lee ES, Ahn BD, Lee SY (2006) Fabrication and characterization of piezoelectric Pb(Zr,Ti)O3-Pb(Mn,W,Sb,Nb)O3 step-down piezoelectric transformer. Sens Actuators A Phys 128(2):350–354

    Article  Google Scholar 

  • Du J, Hu J, Tseng KJ (2004) A plate-shaped high power-density piezoelectric transformer with dual outputs. Ceram Int 30(7):1797–1801

    Article  Google Scholar 

  • Erhart J (2013) Bulk piezoelectric ceramic transformers. Adv Appl Ceram 112(2):91–96

    Article  Google Scholar 

  • Erhart J (2015) Parameters and design optimization of the ring piezoelectric ceramic transformer. J Adv Dielectr 5(3):1550022

    Article  Google Scholar 

  • Erhart J (2016) Transformation and load parameters of the disc piezoelectric transformer. IEEE Trans Power Electron 31(3):2437–2442

    Article  Google Scholar 

  • Erhart J, Půlpán P, Adamczyk M (2011) Domain engineered piezoelectric ceramic transformers. Ferroelectrics 423:25–33

    Article  Google Scholar 

  • Erhart J, Půlpán P, Rusin L (2013a) Bar piezoelectric ceramic transformers. IEEE Trans UFFC 60(7):1479–1486

    Article  Google Scholar 

  • Erhart J, Půlpán P, Doleček R, Psota P, Lédl V (2013b) Disc piezoelectric ceramic transformers. IEEE Trans UFFC 60(8):1612–1617

    Article  Google Scholar 

  • Futakuchi T, Sugimori H, Horii K, Yanagawa A, Adachi M (1999) Preparation of piezoelectric ceramic transformer operating in bending vibration mode. Jpn J Appl Phys 38(6A):3596–3599

    Article  Google Scholar 

  • Ho ST (2007a) Modeling of a disk-type piezoelectric transformer. IEEE Trans UFFC 54(10):2110–2119

    Article  Google Scholar 

  • Ho ST (2007b) Modeling and analysis on ring-type piezoelectric transformers. IEEE Trans UFFC 54(11):2376–2384

    Article  Google Scholar 

  • Hu J, Fuda Y, Katsuno M, Yoshida T (1999) A study on the rectangular-bar-shaped multilayer piezoelectric transformer using length extensional mode. Jpn J Appl Phys 38(5B):3208–3212

    Article  Google Scholar 

  • Hu JH, Li HL, Chan HLW, Choy CL (2001) A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode. Sens Actuators A Phys 88(1):79–86

    Article  Google Scholar 

  • Ivensky G, Zafrany I, Ben-Yaakov S (2002) Generic operational characteristics of piezoelectric transformers. IEEE Trans Power Electron 17(6):1049–1057

    Article  Google Scholar 

  • Jaffe H, Berlincourt DA (1961) Piezoelectric ceramic resonators. U.S. Patent 2,969,512, 24 Jan 1961

    Google Scholar 

  • Kanayama K, Maruko N (1998) Alternately poled piezoelectric transformers using rectangular ceramic plates. Electron Comm Jpn 3, 81(12):29–36

    Google Scholar 

  • Kartashev I, Vontz T (2009) Regimes of piezoelectric transformer operation II. Meas Sci Technol 20:055108

    Article  Google Scholar 

  • Kartashev I, Vontz T, Florian H (2006) Regimes of piezoelectric transformer operation. Meas Sci Technol 17:2150–2158

    Article  Google Scholar 

  • Kawashima S, Ohnishi O, Hakamata H, Tagami S, Fukuoka A, Inoue T, Hirose S (1994) Third order longitudinal mode piezoelectric ceramic transformer and its application to high-voltage power inverter. In: Proceedings of the IEEE Ultrasonics Symposium, pp 525–530

    Google Scholar 

  • Kim I, Joo H, Song J, Jeong S, Kim M (2010) Ring-dot-shaped multilayer piezoelectric step-down transformers using PZT-based ceramics. J Korean Phys Soc 57(4):963–966

    Google Scholar 

  • Koc B, Gao Y, Uchino K (2003) Design of a circular piezoelectric transformer with crescent-shaped input electrodes. Jpn J Appl Phys 42(2A):509–514

    Article  Google Scholar 

  • Koizumi M (1997) FGM activities in Japan. Compos B 28(1–2):1–4

    Article  Google Scholar 

  • Kozielski L, Czekaj AL, Czekaj D (2007) Graded PZT ceramics for piezoelectric transformers. Progr Solid State Chem 35(2–4):521–530

    Article  Google Scholar 

  • Kozielski L, Plonska M, Bucko M (2010) Electrical and mechanical examination of PLZT/PZT graded structure for photovoltaic driven piezoelectric transformers. Mater Sci Forum 636–637:369–373

    Article  Google Scholar 

  • Laoratanakul P, Carazo AV, Bouchilloux P, Uchino K (2002) Unipoled disk-type piezoelectric transformers. Jpn J Appl Phys 41(3A):1446–1450

    Article  Google Scholar 

  • Lin S (2006) Study on a new type of radial composite piezoelectric ultrasonic transducers in radial vibration. IEEE Trans UFFC 53(9):1671–1678

    Article  Google Scholar 

  • Lin S (2007) Electromechanical equivalent circuit of a piezoelectric ceramic thin circular ring in radial vibration. Sens Actuators A Phys 134(2):505–512

    Article  Google Scholar 

  • Lin S, Wang S (2011) Radially composite piezoelectric ceramic tubular transducer in radial vibration. IEEE Trans UFFC 58(11):2492–2498

    Article  Google Scholar 

  • Lin D, Guo MS, Lam KH, Kwok KW, Chan HLW (2008) Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and K5.4Cu1.3Ta10O29 doping for piezoelectric transformer application. Smart Mater Struct 17:035002

    Article  Google Scholar 

  • Lin S, Hu J, Fu Z (2013a) Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring. Smart Mater Struct 22(4):045018

    Article  Google Scholar 

  • Lin S, Fu Z, Zhang X, Wang Y, Hu J (2013b) Radially sandwiched cylindrical piezoelectric transducer. Smart Mater Struct 22(1):015005

    Article  Google Scholar 

  • Liu S, Lin S (2009) The analysis of the electro-mechanical model of the cylindrical radial composite piezoelectric ceramic transducer. Sens Actuators A Phys 155(1):175–180

    Article  Google Scholar 

  • Meitzler AH, O’Bryan HM Jr, Tiersten HF (1973) Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson’s ratio. IEEE Trans Sonics Ultrason SU 20(3):233–239

    Google Scholar 

  • Miyauchi M, Shimohigoshi M, Kato K, Tsurumi T (1998) Step-down transformer utilizing the piezoelectric transversal effect. Electron Comm Jpn 3, 81(12):23–28

    Google Scholar 

  • Muller E, Drasar C, Schilz J, Kaysser WA (2003) Functionally graded materials for sensor and energy applications. Mater Sci Eng, A 362(1–2):17–39

    Article  Google Scholar 

  • Nadal C, Pigache F, Erhart J (2015) Modeling of a ring Rosen type piezoelectric transformer by Hamilton’s principle. IEEE Trans UFFC 62(4):709–720

    Article  Google Scholar 

  • Onishi O, Kishie H, Iwamoto A, Sasaki Y, Zaitsu T, Inoue T (1992) Piezoelectric ceramic transformer operating in thickness extensional vibration mode for power supply. In: Proceedings of the IEEE Ultrasonics Symposium, pp 483–488

    Google Scholar 

  • Priya S, Ural S, Kim HW, Uchino K, Ezaki T (2004) Multilayered unipoled piezoelectric transformers. Jpn J Appl Phys 43(6A):3503–3510

    Article  Google Scholar 

  • Půlpán P, Erhart J (2007) Transformation ratio of “ring-dot” planar piezoelectric transformer. Sens Actuators A Phys 140(2):215–224

    Article  Google Scholar 

  • Půlpán P, Erhart J (2015) Experimental verification of an analytical model for the ring-shaped piezoelectric transformer. J. Electr Electron Eng 8(2):23–28

    Google Scholar 

  • Půlpán P, Erhart J, Štípek O (2007) Modeling of piezoelectric transformers. Ferroelectrics 351(1):204–215

    Article  Google Scholar 

  • Rosen CA, Fish KA, Rothenberg HC (1958) Electromechanical transducer. U.S. Patent 2,830,274, 8 Apr 1958

    Google Scholar 

  • Sasaki Y, Yamamoto M, Ochi A, Inoue T, Takahashi S (1999) Small multilayer piezoelectric transformers with high power density-characteristics of second and third-mode Rosen-type transformers. Jpn J Appl Phys 38(9B):5598–5602

    Article  Google Scholar 

  • Sebastian T, Erhart J (2015) Bar piezoelectric ceramic transformers working in longitudinal mode. Ferroelectrics 486(1):13–24

    Article  Google Scholar 

  • Sebastian T, Kozielski L, Erhart J (2015) Co-sintered PZT ceramics for the piezoelectric transformers. Ceram Int 41(8):9321–9327

    Article  Google Scholar 

  • Uchino K (2000) Ferroelectric devices. Marcel Dekker, New York

    Google Scholar 

  • Uchino K, Hirose S (2001) Loss mechanisms in piezoelectrics: how to measure different losses separately. IEEE Trans UFFC 48(1):307–321

    Article  Google Scholar 

  • Uchino K, Zhuang Y, Ural SO (2011) Loss determination methodology for a piezoelectric ceramic: new phenomenological theory and experimental proposals. J Adv Dielectr 1(1):17–31

    Article  Google Scholar 

  • Wang F, Shi W, Tang Y, Chen X, Wang T, Luo H (2010) A longitudinal (1 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single-crystal piezoelectric transformer. Appl Phys A 100(4):1231–1236

    Article  Google Scholar 

  • Wong NY, Chan HLW, Choy CL (2002) Fabrication of multilayer ring transformer. Proc IEEE ISAF 1:299–302

    Google Scholar 

  • Wong NY, Zhang Y, Chan HLW, Choy CL (2003) A bilayer piezoelectric transformer operating in a bending vibration mode. Mat Sci Eng B-Adv 99(1–3):164–167

    Article  Google Scholar 

  • Xue H, Yang J, Hu Y (2008) Analysis of Rosen piezoelectric transformers with a varying cross-section. IEEE Trans UFFC 55(7):1632–1639

    Article  Google Scholar 

  • Yang J (2007) Piezoelectric transformer structural modeling — a review. IEEE Trans UFFC 54(6):1154–1170

    Article  Google Scholar 

  • Yang JS, Zhang X (2002) Extensional vibration of a nonuniform piezoceramic rod and high voltage generation. Int J Appl Electromagn Mech 16:29–42

    Google Scholar 

  • Yang JS, Zhang X (2005) Analysis of a thickness-shear piezoelectric transformer. Int J Appl Electromagn Mech 21:131–141

    Google Scholar 

  • Yang MR, Chu SY, Chan IH, Huang SK (2011) Fabrication and characterization of Na0.5K0.5NbO3-CuNb2O6 lead-free step-down piezoelectric transformers. J Appl Phys 110:044503

    Article  Google Scholar 

  • Yang SL, Chen SM, Tsai CC, Hong CS, Chu SY (2013) Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts. IEEE Trans UFFC 60(2):408–413

    Article  Google Scholar 

  • Yoo J, Yoon K, Lee Y, Suh S, Kim J, Yoo Ch (2000) Electrical characteristics of the contour-vibration-mode piezoelectric transformer with ring/dot electrode area ratio. Jpn J Appl Phys 39(5A):2680–2684

    Article  Google Scholar 

  • Yoo J, Yoon K, Hwang S, Suh S, Kim J, Yoo Ch (2001) Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp. Sens Actuators A Phys 90(1–2):132–137

    Article  Google Scholar 

  • Zhu X, Zhu J, Zhou S, Li Q, Liu Z (1999) Microstructures of the monomorph piezoelectric ceramic actuators with functional gradients. Sens Actuators A Phys 74(1–3):198–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Erhart .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erhart, J., Půlpán, P., Pustka, M. (2017). Piezoelectric Transformers. In: Piezoelectric Ceramic Resonators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-42481-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42481-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42480-4

  • Online ISBN: 978-3-319-42481-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics