Skip to main content

Applications of Piezoelectric Resonators

  • Chapter
  • First Online:
Piezoelectric Ceramic Resonators

Abstract

Applications of piezoelectric resonators for the measurement of material properties by the resonance methods are discussed in details including general properties of impedance spectrum for the piezoelectric resonator at resonance. Methods for the measurement of complete set of electromechanical material tensors, coupling coefficients, mechanical quality, Poisson’s ratio etc. are described in details including error analysis. The temperature coefficients of the resonance frequency for each piezoelectric ceramic resonator used for the material property measurement are defined and calculated as a function of material data temperature coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemany C, Pardo L, Jimenez B, Carmona F, Mendiola J, Gonzales AM (1994) Automatic iterative evalution of complex material constants in piezoelectric ceramics. J Phys D Appl Phys 27:148–155

    Article  Google Scholar 

  • Alemany C, Pardo L, Jimenez B, Carmona F, Mendiola J, Gonzales AM (1995) Automatic determination of complex of piezoelectric lossy materials in the radial mode. J Phys D Appl Phys 28:945–956

    Article  Google Scholar 

  • Alguero M, Alemany C, Pardo L (2004) Method for obtaining the full set of linear electric, mechanical and electromechanical coefficients and all related losses of a piezoelectric ceramic. J Am Ceram Soc 87(2):209–215

    Article  Google Scholar 

  • Ballato A, Ballato J (1996) Accurate electrical measurements of modern ferroelectrics. Ferroelectrics 182:29–59

    Article  Google Scholar 

  • Boudyš M (1991) Relations between temperature coefficients of permittivity and elastic compliances in PZT ceramics near the morphotropic phase boundary. IEEE Trans UFFC 38(6):569–571

    Article  Google Scholar 

  • Bukhari S, Islam Md, Haziot A, Beamish J (2014) Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures. J Phys Conf Series 568:032004

    Article  Google Scholar 

  • Erhart J, Rusin L, Seifert L (2007) Resonant frequency temperature coefficients for the piezoelectric resonators working in various vibration modes. J Electroceram 19:403–406

    Article  Google Scholar 

  • Erhart J (2011) Domain engineered piezoelectric resonators. In: Pardo L and Ricote J (eds) Handbook on multifunctional polycrystalline ferroelectric materials, vol. 140. Springer series in materials science, pp 651–679

    Google Scholar 

  • Fei L, Zhuo X, Xiaoyong W, Xi Y (2009) Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method. J Phys D Appl Phys 42:095417

    Article  Google Scholar 

  • Gubinyi Z, Batur C, Sayir A, Dynys F (2008) Electrical properties of PZT piezoelectric ceramic at high temperatures. J Electroceram 20:95–105

    Article  Google Scholar 

  • Hána P, Burianová L, Barošová D, Zelenka J (1999) Contribution to the measurement of the electromechanical coupling factor k33 of piezoelectric ceramics. Ferroelectrics 224:39–46

    Article  Google Scholar 

  • Hooker MW (1998) Properties of PZT-based piezoelectric ceramics between −150°C and +250°C, report NASA/CR-1998-208708

    Google Scholar 

  • ANSI/IEEE Standard 176-1987 (1996) Standard on piezoelectricity, reproduced in IEEE Trans UFFC 43:1–54

    Google Scholar 

  • IEEE Standard 177-1966 (1993) Standard definitions and methods of measurement for piezoelectric vibrators, reproduced in IEEE Trans UFFC 40(1):1–19

    Google Scholar 

  • IEC Standard 483 (1976) Guide to dynamic measurements of piezoelectric ceramics with high electromechanical coupling, pp 17, 25, 32

    Google Scholar 

  • Inai S, Hiruma Y, Suzuki M, Nagata H, Takenaka T (2008) Temperature dependences of piezoelectric properties of vanadium substituted SrBi2Nb2O9 ceramics with grain orientation. Ceram Int 34:741–744

    Article  Google Scholar 

  • IRE Standard 179-1961 (1961) Standards on piezoelectric crystals: Measurement on piezoelectric ceramics, Proc IRE 14.S1:1161-1169

    Google Scholar 

  • IRE Standards on piezoelectric crystals (1958) Determination of the elastic, piezoelectric, and dielectric constants—the electromechanical coupling factor. Proc IRE 14(S1):764–778

    Google Scholar 

  • Kallaev SN, Gadzhiev GG, Kamilov IK, Omarov ZM, Sadykov SA, Reznichenko LA (2006) Thermal properties of PZT-based ferroelectric ceramics. Phys Solid State 48(6):1169–1170

    Article  Google Scholar 

  • Kugel VD, Rosenman G, Shur D (1995) Piezoelectric properties of bidomain LiNbO3 crystals. J Appl Phys 78:5592–5596

    Article  Google Scholar 

  • Lee GM, Kim BH (2005) Effects of thermal aging on temperature stability of Pb(Zr y Ti1−y )O3 + x(wt.%)Cr2O3 ceramics. Mater Chem Phys 91:233–236

    Article  Google Scholar 

  • Lente MH, Zanin AL, Vasiljevic J, dos Santos IA, Eiras JA, Garcia D (2004) Temperature coefficient of piezoelectric constants in Pb(Mg1/3Nb2/3)O3−PbTiO3 ceramics. Mater Res 7(2):369–372

    Article  Google Scholar 

  • Maeda M, Hashimoto H, Suzuki I (2003) Measurements of complex materials constants of piezoelectrics: extensional vibrational mode of a rectangular bar. J Phys D Appl Phys 36:176–180

    Article  Google Scholar 

  • Mason WP (1937) Wave filter. US patent 2,081,405, 25 May 1937

    Google Scholar 

  • Meitzler AH, O’Brian HM, Tiersten HF (1973) Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson’s ratio, IEEE Trans Sonics Ultrason SU-20(3):233–239

    Google Scholar 

  • Moure A, Alemany C, Pardo L (2005) Temperature dependence of piezoelectric, elastic and dielectric coefficients at radial resonance of piezoceramics with an Aurivillius-type structure. IEEE Trans UFFC 52(4):570–577

    Article  Google Scholar 

  • Nagata H, Matsuzawa S, Tokutsu T, Inai S, Suzuki M, Hiruma Y, Takenaka T (2009) Temperature dependence of piezoelectric properties on Nd and V co-substituted Bi4Ti3O12 ceramics for ceramic resonator applications. Ceram Int 35:163–167

    Article  Google Scholar 

  • Onoe M (1956) Contour vibrations of isotropic circular plates. J Acoust Soc Am 28(6):1158–1162

    Article  Google Scholar 

  • Paik DS, Park SE, Shrout TR, Hackenberger W (1999) Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures. J Mater Sci 34:469–473

    Article  Google Scholar 

  • Piezoelectric Resonance Analysis Program (PRAP) software, TASI Technical Software Inc., 149, Earl Street, Kingston, Ontario, Canada K7L 2H3, http://www.tasitechnical.com/

  • Priya S, Kim HW, Uchino K (2004) Low temperature coefficient of resonance frequency composition in the system Pb(Zr,Ti)O3–Pb(Mn1/3Nb2/3)O3. J Am Ceram Soc 87(10):1907–1911

    Article  Google Scholar 

  • Sabat RG, Mukherjee BK, Wei R, Guomao Y (2007) Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J Appl Phys 101:064111

    Article  Google Scholar 

  • Sherrit S, Mukherjee HD, Sayer M (1997) An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode. J Phys D Appl Phys 30:2354–2363

    Article  Google Scholar 

  • Smits JG (1976) Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics, IEEE Trans Sonics Ultrason SU-23(6):393–401

    Google Scholar 

  • Stefan O (1970) Contour vibrations of circular ceramics resonators. Czech J Phys 20(2):113–122 (in Czech)

    Google Scholar 

  • Tichý J, Erhart J, Kittinger E, Přívratská J (2010) Fundamentals of piezoelectric sensorics, mechanical, dielectric and thermodynamical properties of piezoelectric materials. Springer, Heidelberg, Berlin

    Google Scholar 

  • Zelenka J (1986) Piezoelectric resonators and their applications. Elsevier, Amsterdam

    Google Scholar 

  • Zhang XL, Chen ZX, Cross LE, Schulze WA (1983) Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K. J Mater Sci 18:968–972

    Article  Google Scholar 

  • Zhuang ZQ, Haun M, Jang SJ, Cross LE (1989) Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics. IEEE Trans UFFC 36(4):413–416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Erhart .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erhart, J., Půlpán, P., Pustka, M. (2017). Applications of Piezoelectric Resonators. In: Piezoelectric Ceramic Resonators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-42481-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42481-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42480-4

  • Online ISBN: 978-3-319-42481-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics