Skip to main content

Gynecologic malignancies

  • Chapter
  • First Online:
  • 1623 Accesses

Part of the book series: Practical Guides in Radiation Oncology ((PGRO))

This is a preview of subscription content, log in via an institution.

References

  1. Siegel RL, et al. Cancer Statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Sedlis A, et al. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group Study. Gynecol Oncol. 1999;73(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  3. Rotman M, et al. A phase III randomized trial of postoperative pelvic irradiation in stage IB cervical carcinoma with poor prognostic features: follow-up of a gynecologic oncology group study. Int J Radiat Oncol Biol Phys. 2006;65(1):169–76.

    Article  PubMed  Google Scholar 

  4. Peters WA III, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol. 2000;18(8):1606–13.

    Article  CAS  PubMed  Google Scholar 

  5. Keys HM, et al. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2004;92(3):744–51.

    Article  PubMed  Google Scholar 

  6. Scholten AN, et al. Postoperative radiotherapy for stage 1 endometrial carcinoma: long-term outcome of the randomized PORTEC trial with central pathology review. Int J Radiat Oncol Biol Phys. 2005;63(3):834–8.

    Article  PubMed  Google Scholar 

  7. Sorbe B, et al. External pelvic and vaginal irradiation versus vaginal irradiation alone as postoperative therapy in medium-risk endometrial carcinoma–a prospective randomized study. Int J Radiat Oncol Biol Phys. 2012;82(3):1249–55.

    Article  PubMed  Google Scholar 

  8. Rose PG, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340:1144–53.

    Article  CAS  PubMed  Google Scholar 

  9. Greven K, et al. Final analysis of RTOG 9708: adjuvant postoperative irradiation combined with cisplatin/paclitaxel chemotherapy following surgery for patients with high-risk endometrial cancer. Gynecol Oncol. 2006;103(1):155–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mauch P, et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys. 1995;31(5):1319–39.

    Article  CAS  PubMed  Google Scholar 

  11. Parker K, et al. Five years' experience treating locally advanced cervical cancer with concurrent chemoradiotherapy and high-dose-rate brachytherapy: results from a single institution. Int J Radiat Oncol Biol Phys. 2009;74(1):140–6.

    Article  PubMed  Google Scholar 

  12. Mell LK, et al. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(5):1356–65.

    Article  PubMed  Google Scholar 

  13. Albuquerque K, et al. Radiation-related predictors of hematologic toxicity after concurrent chemoradiation for cervical cancer and implications for bone marrow-sparing pelvic IMRT. Int J Radiat Oncol Biol Phys. 2011;79(4):1043–7.

    Article  PubMed  Google Scholar 

  14. Klopp AH, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86(1):83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Portelance L, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261–6.

    Article  CAS  PubMed  Google Scholar 

  16. Song WY, et al. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer. J Appl Clin Med Phys. 2010;11(4):3255.

    Article  PubMed  Google Scholar 

  17. Lin A, et al. Intensity-modulated radiation therapy for the treatment of anal cancer. Clin Colorectal Cancer. 2007;6(10):716–9.

    Article  PubMed  Google Scholar 

  18. Jhingran A, et al. A phase ii study of intensity modulated radiation therapy to the pelvis for postoperative patients with endometrial carcinoma: Radiation Therapy Oncology Group trial 0418. Int J Radiat Oncol Biol Phys. 2012;84(1):e23–8.

    Article  PubMed  Google Scholar 

  19. Milby AB, et al. Dosimetric comparison of combined intensity-modulated radiotherapy (IMRT) and proton therapy versus IMRT alone for pelvic and para-aortic radiotherapy in gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2012;82(3):e477–84.

    Article  PubMed  Google Scholar 

  20. Lin L, et al. Initial report of pencil beam scanning proton therapy for posthysterectomy patients with gynecologic cancer. Int J Radiat Oncol Biol Phys. 2016;95(1):181–9.

    Article  PubMed  Google Scholar 

  21. Tsai C, et al. A prospective randomized trial to study the impact of pretreatment FDG-PET for cervical cancer patients with MRI-detected positive pelvic but negative para-aortic lymphadenopathy. Int J Radiat Oncol Biol Phys. 2010;76(2):477–84.

    Article  PubMed  Google Scholar 

  22. Kidd EA, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77(4):1085–91.

    Article  PubMed  Google Scholar 

  23. Kidd EA, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol. 2010;28(12):2108–13.

    Article  PubMed  Google Scholar 

  24. Simcock B, et al. The role of positron emission tomography/computed tomography in planning radiotherapy in endometrial cancer. Int J Gynecol Cancer. 2015;25(4):645–9.

    Article  PubMed  Google Scholar 

  25. Viswanathan AN, et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Gynecol Cancer. 2007;68(2):491–8.

    Google Scholar 

  26. Haie-Meder C, et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74(3):235–45.

    Article  PubMed  Google Scholar 

  27. Dimopoulos JCA, et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Viswanathan AN, et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2014;90(2):320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harris EE, et al. Assessment of organ motion in postoperative endometrial and cervical cancer patients treated with intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(4):e645–50.

    Article  PubMed  Google Scholar 

  30. Jhingran A, et al. Vaginal motion and bladder and rectal volumes during pelvic intensity-modulated radiation therapy after hysterectomy. Int J Radiat Oncol Biol Phys. 2012;82(1):256–62.

    Article  PubMed  Google Scholar 

  31. Ma DJ, et al. Magnitude of interfractional vaginal cuff movement, implications for external irradiation. Int J Radiat Oncol Biol Phys. 2012;82(4):1439–44.

    Article  PubMed  Google Scholar 

  32. Small W Jr, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):428–34.

    Article  PubMed  Google Scholar 

  33. Lim K, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.

    Article  PubMed  Google Scholar 

  34. Taylor A, et al. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1604–12.

    Article  PubMed  Google Scholar 

  35. Kabolizadeh P, et al. Are radiation therapy oncology group para-aortic contouring guidelines for pancreatic neoplasm applicable to other malignancies - assessment of nodal distribution in gynecological malignancies. Int J Radiat Oncol Biol Phys. 2013;87(1):106–10.

    Article  PubMed  Google Scholar 

  36. NCT01600040, Proton Beam Teletherapy for Post-Hysterectomy Cancers of the Uterus and Cervix; 2012 May 14. Available from: https://clinicaltrials.gov/ct2/show/record/NCT01600040.

  37. Yang M, et al. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues. Phys Med Biol. 2010;55(5):1343–62.

    Article  CAS  PubMed  Google Scholar 

  38. Hunemohr N, et al. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol. 2013;59(1):83–96.

    Article  PubMed  Google Scholar 

  39. Hansen DC, et al. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark. Acta Oncol. 2015;54(9):1–5.

    Article  Google Scholar 

  40. Hansen DC, et al. Fast reconstruction of low dose proton CT by sinogram interpolation. Phys Med Biol. 2016;61(15):5868–82.

    Article  PubMed  Google Scholar 

  41. Kurosawa S, et al. Prompt gamma detection for range verification in proton therapy. Curr Appl Phys. 2012;12(2):364–8.

    Article  Google Scholar 

  42. Polf JC, et al. Detecting prompt gamma emission during proton therapy: the effects of detector size and distance from the patient. Phys Med Biol. 2014;59(9):2325–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilie Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scholey, J.E., Boimel, P.J., Kirk, M., Lin, L. (2018). Gynecologic malignancies. In: Lee, N., et al. Target Volume Delineation and Treatment Planning for Particle Therapy. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42478-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42478-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42477-4

  • Online ISBN: 978-3-319-42478-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics