Skip to main content

Carbon Ion Radiation Therapy for Liver Tumors

  • Chapter
  • First Online:
Target Volume Delineation and Treatment Planning for Particle Therapy

Part of the book series: Practical Guides in Radiation Oncology ((PGRO))

Abstract

Carbon ion radiation therapy (CIRT) facilities are available in Japan, Germany, and China. The National Institute of Radiological Science (NIRS) and Hyogo Ion Beam Medical Center (HIBMC), both institutions in Japan, have used CIRT to treat hepatocellular carcinoma (HCC) patients, and Heidelberg Ion Beam Therapy Center (HIT) in Germany has treated limited patients. The outcome of CIRT for HCC was been very encouraging. Shanghai Proton and Heavy Ion Center (SPHIC) have started using CIRT for HCC since 2014. In this section, we will address CIRT for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Liang SX, Zhu XD, Xu ZY, et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: the risk factors and hepatic radiation tolerance. Int J Radiat Oncol Biol Phys. 2006;65(2):426–34.

    Article  PubMed  Google Scholar 

  2. Xu ZY, Liang SX, Zhu J, et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma. Int J Radiat Oncol Biol Phys. 2006;65(1):189–95.

    Article  PubMed  Google Scholar 

  3. Zhao JD, Jiang GL, Hu WG, et al. Hepatocyte regeneration after partial liver irradiation in rats. Exp Toxicol Pathol. 2009;61(5):511–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ren ZG, Zhao JD, Gu K, et al. Hepatic proliferation after partial liver irradiation in rat. Mol Biol Rep. 2012;39(4):3829–36.

    Article  CAS  PubMed  Google Scholar 

  5. Gu K, Lai ST, Ma NY, et al. Hepatic regeneration after sublethal partial liver irradiation in cirrhotic rats. J Radiat Res (Tokyo). 2011;52(5):582–91.

    Article  CAS  Google Scholar 

  6. Gu K, Zhao JD, Ren ZG, et al. A natural process of cirrhosis resolution and deceleration of liver regeneration after thioacetamide withdrawal in a rat model. Mol Biol Rep. 2011;38(3):1687–96.

    Article  CAS  PubMed  Google Scholar 

  7. Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta. 1796;2009:216–29.

    Google Scholar 

  8. Allen C, Borak TB, Tsujii H, et al. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res. 2011;711:150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Furusawa Y. The characteristics of carbon ion radiotherapy. In: Tsujii H, Kamada T, Shirai T, Noda K, Tsuji H, Karawawa K, editors. Carbon ion radiotherapy. Japan: Springer; 2014. p. 25–37.

    Chapter  Google Scholar 

  10. Habermehl D, Ilicic K, Dehne S, et al. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines. PLoS One. 2014;9(12):e113591.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bassler N, Toftegaard J, Luhr A, et al. LET-painting increases tumor control probability in hypoxic tumors. Acta Oncol. 2014;53:25–32.

    Article  PubMed  Google Scholar 

  12. Mori S, Zenklusen S, Inaniwa T, et al. Conformity and robustness of gated rescanned carbon ion pencil beam scanning of liver tumors at NIRS. Radiother Oncol. 2014;111:431–6.

    Article  PubMed  Google Scholar 

  13. Mori S, Inaniwa T, Furukawa T, et al. Amplitude-based gated phase-controlled rescanning in carbon-ion scanning beam treatment planning under irregular breathing conditions using lung and liver 4DCTs. J Radiat Res. 2014;55:948–58.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ogata S, Mori S, Yasuda S. Extended phase-correlated rescanning irradiation to improve dose homogeneity in carbon-ion beam liver treatment. Phys Med Biol. 2014;59:5091–9.

    Article  PubMed  Google Scholar 

  15. Richter D, Graeff C, Jakel O, et al. Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiother Oncol. 2014;113:290–5.

    Article  PubMed  Google Scholar 

  16. Kato H, Tsujii H, Miyamoto T, et al. Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int J Radiat Oncol Biol Phys. 2004;59(5):1468–76.

    Article  PubMed  Google Scholar 

  17. Imada H, Kato H, Yasuda S, et al. Conparison of efficacy and toxicity of short-course carbon ion radiotherapy for hepatocellular carcinoma depending on their proximity to the porta hepatis. Radiother Oncol. 2010;96:231–5.

    Article  PubMed  Google Scholar 

  18. Tsujii H, Kamada T, Shirai T, et al. Carbon-ion radiotherapy: principles, practices, and treatment planning. Japan: Springer; 2014. p. 213–8.

    Book  Google Scholar 

  19. Imada H, Kato H, Yasuda S, et al. Compensatory enlargement of the liver after treatment of hepatocellular carcinoma with carbon ion radiotherapy - relation to prognosis and liver function. Radiother Oncol. 2010;96:236–42.

    Article  PubMed  Google Scholar 

  20. Komatsu S, Fukumoto T, Demizu Y, et al. Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma. Cancer. 2011;117(21):4890–904.

    Article  CAS  PubMed  Google Scholar 

  21. Combs SE, Habermehl D, Ganten T, et al. Phase I study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: the PROMETHEUS-01 trail. BMC Cancer. 2011;11:67.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Habermehl D, Debus J, Ganten T, et al. Hypofractionated carbon ion therapy delivered with scanned ion beam for patients with hepatocellular carcinoma - feasibility and clinical response. Radiat Oncol. 2013;8:59.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steinstrater O, Grun R, Scholz U, et al. Mapping of RBE-weighted doses between HIMAC and LEM based treatment planning system for carbon ion therapy. Int J Radiat Oncol Biol Phys. 2012;84(3):854–60.

    Article  PubMed  Google Scholar 

  24. Fossati P, Molinelli S, Matsufuji N, et al. Dose prescription in carbon ion radiotherapy: a planning study for compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;57:7543–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z., Wang, WW., Shahnazi, K., Jiang, GL. (2018). Carbon Ion Radiation Therapy for Liver Tumors. In: Lee, N., et al. Target Volume Delineation and Treatment Planning for Particle Therapy. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42478-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42478-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42477-4

  • Online ISBN: 978-3-319-42478-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics