Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Blakely EA, Tobias CA, Ludewigt BA, Chu WT, Some physical and biological properties of light ions. In: Chu W, editor. Proceedings of the Fifth PTCOG Meeting & International Workshop on Biomedical Accelerators. Lawrence Berkeley Laboratories Report LBL-22962; 1986.

    Google Scholar 

  2. Chu WT, Ludewigt BA, Renner TR. Instrumentation for treatment of cancer using proton and light-ion beams. Lawrence Berkeley Laboratories Report LBL-33403, UC406; 1993.

    Google Scholar 

  3. Wambersie A, Deluca PM, Andreo P, Hendry JH. Light or heavy ions: a debate of terminology. Radiother Oncol. 2004;73(S2):iiii.

    Article  Google Scholar 

  4. Vatnitsky SM, Moyers MF. Radiation therapy with light ions. In: van Dyk J, editor. The modern technology of radiation oncology v.3: A compendium for medical physicists and radiation oncologists. Wisconsin: Medical Physics Publishing; 2013. p. 183–222. ISBN: 978-1-930524-57-6.

    Google Scholar 

  5. Jermann M. Particle therapy statistics in 2014. Int J of Particle Therapy. 2015;2(1):50–4.

    Article  Google Scholar 

  6. Goitein M. Radiation oncology: A Physicist's-eye. New York: Springer-Verlag; 2008.

    Google Scholar 

  7. Moyers MF, Stanislav V. Practical implementation of light ion beam treatments. Madison, WI: Medical Physics Publishing; 2012.

    Google Scholar 

  8. Metcalfe P, Kron T, Hoban P. The physics of radiotherapy X-rays from linear accelerators. Madison, WI: Medical Physics Publishing; 2007.

    Google Scholar 

  9. Dowdell SJ, Clasie B, Depauw N, Metcalfe P, Rosenfeld AB, Kooy HM, Flanz JB, Paganetti H. Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy. Phys Med Biol. 2012;57:2829–42.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moteabbed M, Yock TI, Depauw N, Madden TM, Kooy HM, Paganetti H. Impact of spot size and beam-shaping devices on the treatment plan quality for pencil beam scanning proton therapy. Int J Radiat Oncol Biol Phys. 2016;95:190–8.

    Article  PubMed  Google Scholar 

  11. Paganetti H, editor. Proton therapy physics. Boca Raton, FL: CRC Press; 2011.

    Google Scholar 

  12. Paganetti H, Jiang H, Parodi K, Slopsema R, Engelsman M. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Phys Med Biol. 2008;53:4825–53.

    Article  PubMed  Google Scholar 

  13. Paganetti H. Relating proton treatments to photon treatments via the relative biological effectiveness-should we revise current clinical practice? Int J Radiat Oncol Biol Phys. 2015;91:892–4.

    Article  PubMed  Google Scholar 

  14. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59:R419–72.

    Article  PubMed  Google Scholar 

  15. Cuaron JJ, Chang C, Lovelock M, et al. Exponential increase in relative biological effectiveness along distal edge of a proton Bragg peak as measured by deoxyribonucleic acid double-strand breaks. Int J Radiat Oncol Biol Phys. 2016;95:62–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. ICRU. Prescribing, recording, and reporting proton-beam therapy. J ICRU. 2007;78:7.

    Google Scholar 

  17. Grassberger C, Trofimov A, Lomax A, et al. Variations in linear energy transfer within clinical proton therapy fields and the potential for biological treatment planning. Int J Radiat Oncol Biol Phys. 2011;80:1559–66.

    Article  PubMed  Google Scholar 

  18. Relative biological effectiveness in ion beam therapy. IAEA Technical Reports Series. 2008;461:1–165.

    Google Scholar 

  19. De Laney TF, Kooy HM. Proton and charged particle radiotherapy. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  20. Ainsley CG, Yeager CM. Practical considerations in the calibration of CT scanners for proton therapy. J Appl Clin Med Phys. 2014;15(3):4721.

    Article  PubMed  Google Scholar 

  21. Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57(11):R99–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blosser HG. Compact superconducting synchrocyclotron systems for proton therapy. Nucl Inst Methods Phys Res Sec B. 1989;40–41:1326–30.

    Article  Google Scholar 

  23. Robin DS, Arbelaez D, Caspi S, Sun C, Sessler A, Wan W, Yoon M. Superconducting toroidal combined-function magnet for a compact ion beam cancer therapy gantry. Nucl Instrum Methods Phys Res A. 2011;659(1):484–93.

    Article  CAS  Google Scholar 

  24. Schneider U, Pedroni E. Proton radiography as a tool for quality control in proton therapy. Med Phys. 1995;22:353–63.

    Article  CAS  PubMed  Google Scholar 

  25. Tang S, Both S, Bentefour EH, Paly JJ, Tochner Z, Efstathiou J, Lu HM. Improvement of prostate treatment by anterior proton fields. Int J Radiat Oncol Biol Phys. 2012;83:408–18.

    Article  PubMed  Google Scholar 

  26. Richter C, Pausch G, Barczyk S, Priegnitz M, Keitz I, Thiele J, Smeets J, et al. First clinical application of a prompt gamma based in vivo proton range verification system. Radiother Oncol. 2016; 118:232–7.

    Google Scholar 

  27. Yang M, Virshup G, Clayton J, Zhu XR, Mohan R, Dong L. Does kV-MV dual-energy computed tomography have an advantage in determining proton stopping power ratios in patients? Phys Med Biol. 2011;56:4499–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knopf A, Parodi K, Bortfeld T, Shih HA, Paganetti H. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans. Phys Med Biol. 2009;54:4477–95.

    Article  CAS  PubMed  Google Scholar 

  29. Krejcarek SC, Grant PE, Henson JW, Tarbell NJ, Yock TI. Physiologic and radiographic evidence of the distal edge of the proton beam in craniospinal irradiation. Int J Radiat Oncol Biol Phys. 2007;68:646–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rietzel E, Bert C. Respiratory motion management in particle therapy. Med Phys. 2010;37:449–60.

    Article  PubMed  Google Scholar 

  31. Wedenberg M, Lind BK, Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor of the sensitivity to LET changes. Acta Oncol. 2013;52:580–8.

    Article  PubMed  Google Scholar 

  32. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47:551–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Mah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mah, D., Moyers, M., Kang-Hsin Wang, K., Diffenderfer, E., Cuaron, J., Pankuch, M. (2018). Physics Essentials of Particle Therapy. In: Lee, N., et al. Target Volume Delineation and Treatment Planning for Particle Therapy. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42478-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42478-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42477-4

  • Online ISBN: 978-3-319-42478-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics