Skip to main content

Ultrasound and Food Fermentation

  • Chapter
  • First Online:
Novel Food Fermentation Technologies

Part of the book series: Food Engineering Series ((FSES))

Abstract

Various novel techniques are proposed to improve process efficiency, quality and safety of fermented food products. Ultrasound is one such versatile technology which can be employed for both processing and process monitoring applications. The objective of this chapter is to highlight current and potential applications of ultrasound technology for food fermentation applications. Ultrasound has been employed to induce desired physical and chemical changes in food fermentation processes and also for monitoring applications. Effect of high and low frequency ultrasound along with mechanisms of action is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amer, M. A., Novoa-Díaz, D., Puig-Pujol, A., Capdevila, J., Chávez, J. A., Turó, A., et al. (2015). Ultrasonic velocity of water–ethanol–malic acid–lactic acid mixtures during the malolactic fermentation process. Journal of Food Engineering, 149, 61–69.

    Article  CAS  Google Scholar 

  • Awad, T., Moharram, H., Shaltout, O., Asker, D., & Youssef, M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410–427.

    Article  CAS  Google Scholar 

  • Bamberger, J. A., & Greenwood, M. S. (2004). Measuring fluid and slurry density and solids concentration non-invasively. Ultrasonics, 42(1), 563–567.

    Article  CAS  Google Scholar 

  • Bartowsky, E. (2009). Bacterial spoilage of wine and approaches to minimize it. Letters in Applied Microbiology, 48(2), 149–156.

    Article  CAS  Google Scholar 

  • Barukčić, I., Jakopović, K. L., Herceg, Z., Karlović, S., & Božanić, R. (2015). Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet whey. Innovative Food Science & Emerging Technologies, 27, 94–101.

    Article  Google Scholar 

  • Becker, T., Mitzscherling, M., & Delgado, A. (2001). Ultrasonic velocity–A noninvasive method for the determination of density during beer fermentation. Engineering in Life Sciences, 1(2), 61–67.

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre, D., Corradini, M. G., Mawson, R., & Barbosa-Cánovas, G. V. (2009). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative Food Science & Emerging Technologies, 10(2), 172–178.

    Article  Google Scholar 

  • Cabredo-Pinillos, S., Cedrón-Fernández, T., González-Briongos, M., Puente-Pascual, L., & Sáenz-Barrio, C. (2006). Ultrasound-assisted extraction of volatile compounds from wine samples: Optimisation of the method. Talanta, 69(5), 1123–1129.

    Article  CAS  Google Scholar 

  • Chang, A. C., & Chen, F. C. (2002). The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chemistry, 79(4), 501–506.

    Article  CAS  Google Scholar 

  • Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.

    Article  CAS  Google Scholar 

  • Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107(6), 2411–2502.

    Article  CAS  Google Scholar 

  • Dolatowski, Z. J., Stadnik, J., & Stasiak, D. (2007). Applications of ultrasound in food technology. Acta Scientiarum Polonorum. Technologia Alimentaria, 6(3), 89–99.

    Google Scholar 

  • Du Toit, M., & Pretorius, I. S. (2000). Microbial spoilage and preservation of wine: Using weapons from nature’s own arsenal—A review. South African Journal of Enology and Viticulture, 21(Special Issue), 74–96.

    Google Scholar 

  • Elmehdi, H. M., Page, J. H., & Scanlon, M. G. (2003). Monitoring dough fermentation using acoustic waves. Food and Bioproducts Processing, 81(3), 217–223.

    Article  Google Scholar 

  • Elvira, L., Vera, P., Cañadas, F. J., Shukla, S. K., & Montero, F. (2016). Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics, 64, 151–161.

    Article  CAS  Google Scholar 

  • Feng, H., Barbosa-Cánovas, G. V., & Weiss, J. (2011). Ultrasound technologies for food and bioprocessing. New York: Springer.

    Book  Google Scholar 

  • Gracin, L., Jambrak, A. R., Juretić, H., Dobrović, S., Barukčić, I., Grozdanović, M., et al. (2016). Influence of high power ultrasound on Brettanomyces and lactic acid bacteria in wine in continuous flow treatment. Applied Acoustics, 103, 143–147.

    Article  Google Scholar 

  • Henning, B., & Rautenberg, J. (2006). Process monitoring using ultrasonic sensor systems. Ultrasonics, 44, e1395–e1399.

    Article  Google Scholar 

  • Hoche, S., Hussein, M. A., & Becker, T. (2014). Critical process parameter of alcoholic yeast fermentation: Speed of sound and density in the temperature range 5–30 degrees C. International Journal of Food Science and Technology, 49(11), 2441–2448.

    Article  CAS  Google Scholar 

  • Hongyu, W., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1(3), 211–218.

    Article  Google Scholar 

  • Jiranek, V., Grbin, P., Yap, A., Barnes, M., & Bates, D. (2008). High power ultrasonics as a novel tool offering new opportunities for managing wine microbiology. Biotechnology Letters, 30(1), 1–6.

    Article  CAS  Google Scholar 

  • Jomdecha, C., & Prateepasen, A. (2011). Effects of pulse ultrasonic irradiation on the lag phase of Saccharomyces cerevisiae growth. Letters in Applied Microbiology, 52(1), 62–69.

    Article  CAS  Google Scholar 

  • Krause, D., Hussein, W. B., Hussein, M. A., & Becker, T. (2014). Ultrasonic sensor for predicting sugar concentration using multivariate calibration. Ultrasonics, 54(6), 1703–1712.

    Article  CAS  Google Scholar 

  • Kulkarni, P., Loira, I., Morata, A., Tesfaye, W., González, M. C., & Suárez-Lepe, J. A. (2015). Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters. LWT-Food Science and Technology, 64(2), 1255–1262.

    Article  CAS  Google Scholar 

  • Kuo, F.-J., Sheng, C.-T., & Ting, C.-H. (2008). Evaluation of ultrasonic propagation to measure sugar content and viscosity of reconstituted orange juice. Journal of Food Engineering, 86(1), 84–90.

    Article  CAS  Google Scholar 

  • Lanchun, S., Bochu, W., Zhiming, L., Chuanren, D., Chuanyun, D., & Sakanishi, A. (2003). The research into the influence of low-intensity ultrasonic on the growth of S. cerevisiae. Colloids and Surfaces B: Biointerfaces, 30(1–2), 43–49.

    Article  Google Scholar 

  • Lee, H., Zhou, B., Liang, W., Feng, H., & Martin, S. E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93(3), 354–364.

    Article  Google Scholar 

  • Lentacker, I., De Cock, I., Deckers, R., De Smedt, S. C., & Moonen, C. T. W. (2014). Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Advanced Drug Delivery Reviews, 72, 49–64.

    Article  CAS  Google Scholar 

  • Luo, H., Schmid, F., Grbin, P. R., & Jiranek, V. (2012). Viability of common wine spoilage organisms after exposure to high power ultrasonics. Ultrasonics Sonochemistry, 19(3), 415–420.

    Article  CAS  Google Scholar 

  • Martín, J. F. G., & Sun, D.-W. (2013). Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of-the-art research. Trends in Food Science & Technology, 33(1), 40–53.

    Article  Google Scholar 

  • Martín, J. F. G., Guillemet, L., Feng, C., & Sun, D.-W. (2013). Cell viability and proteins release during ultrasound-assisted yeast lysis of light lees in model wine. Food Chemistry, 141(2), 934–939.

    Article  Google Scholar 

  • Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260.

    Article  CAS  Google Scholar 

  • Mason, T. J., & Peters, D. (2002). Practical sonochemistry: Power ultrasound uses and applications. Cambridge: Woodhead.

    Book  Google Scholar 

  • Masuzawa, N., Kimura, A., & Ohdaira, E. (2003). Ultrasonic monitoring of the progress of lactic acid fermentation. Japanese Journal of Applied Physics, 42(5S), 2963.

    Article  CAS  Google Scholar 

  • Matsuura, K., Hirotsune, M., Nunokawa, Y., Satoh, M., & Honda, K. (1994). Acceleration of cell growth and ester formation by ultrasonic wave irradiation. Journal of Fermentation and Bioengineering, 77(1), 36–40.

    Article  CAS  Google Scholar 

  • Mattiat, O. E. (2013). Ultrasonic transducer materials. New York: Springer.

    Google Scholar 

  • McClements, D. J., & Gunasekaran, S. (1997). Ultrasonic characterization of foods and drinks: Principles, methods, and applications. Critical Reviews in Food Science and Nutrition, 37(1), 1–46.

    Article  CAS  Google Scholar 

  • Mitri, F. G., Kinnick, R. R., Greenleaf, J. F., & Fatemi, M. (2009). Continuous-wave ultrasound reflectometry for surface roughness imaging applications. Ultrasonics, 49(1), 10–14.

    Article  CAS  Google Scholar 

  • Moncada, M., Aryana, K. J., & Boeneke, C. (2012). Effect of mild sonication conditions on the attributes of Lactobacillus delbrueckii ssp. bulgaricus LB-12. Advances in Microbiology, 2(2), 104–111.

    Article  Google Scholar 

  • Monsen, T., Lövgren, E., Widerström, M., & Wallinder, L. (2009). In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections. Journal of Clinical Microbiology, 47(8), 2496–2501.

    Article  Google Scholar 

  • Nakamura, K. (2012). Ultrasonic transducers: Materials and design for sensors, actuators and medical applications. Oxford: Elsevier.

    Book  Google Scholar 

  • Nguyen, T. M. P., Lee, Y. K., & Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound. International Dairy Journal, 19(6–7), 410–416.

    Article  CAS  Google Scholar 

  • Nguyen, T. M. P., Lee, Y. K., & Zhou, W. (2012). Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chemistry, 130(4), 866–874.

    Article  CAS  Google Scholar 

  • Nishizu, T., Torikata, Y., Yoshioka, N., & Ikeda, Y. (2005). Study on improving noise-tolerance of acoustic volume-measuring technique for agricultural products and foods. Journal of the Japanese Society of Agricultural Machinery, 67(3), 49–57.

    Google Scholar 

  • Novoa-Díaz, D., Rodríguez-Nogales, J., Fernández-Fernández, E., Vila-Crespo, J., García-Álvarez, J., Amer, M., et al. (2014). Ultrasonic monitoring of malolactic fermentation in red wines. Ultrasonics, 54(6), 1575–1580.

    Article  Google Scholar 

  • O’Donnell, C., Tiwari, B., Bourke, P., & Cullen, P. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science & Technology, 21(7), 358–367.

    Article  Google Scholar 

  • Ogasawara, H., Mizutani, K., Ohbuchi, T., & Nakamura, T. (2006). Acoustical experiment of yogurt fermentation process. Ultrasonics, 44(Suppl 1), e727–e730.

    Article  Google Scholar 

  • Pal, B. (2015). Pulse-echo method cannot measure wave attenuation accurately. Ultrasonics, 61, 6–9.

    Article  Google Scholar 

  • Pereira, R., & Vicente, A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943.

    Article  Google Scholar 

  • Radel, S., McLoughlin, A. J., Gherardini, L., Doblhoff-Dier, O., & Benes, E. (2000). Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves. Ultrasonics, 38(1–8), 633–637.

    Article  CAS  Google Scholar 

  • Resa, P., Elvira, L., Montero de Espinosa, F., & Gómez-Ullate, Y. (2005). Ultrasonic velocity in water–ethanol–sucrose mixtures during alcoholic fermentation. Ultrasonics, 43(4), 247–252.

    Article  CAS  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chemistry, 114(3), 905–911.

    Article  CAS  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2010). A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chemistry, 119(3), 1108–1113.

    Article  CAS  Google Scholar 

  • Schäfer, R., Carlson, J. E., & Hauptmann, P. (2006). Ultrasonic concentration measurement of aqueous solutions using PLS regression. Ultrasonics, 44(Suppl 1), e947–e950.

    Article  Google Scholar 

  • Shah, N. P., & Lankaputhra, W. E. (1997). Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. International Dairy Journal, 7(5), 349–356.

    Article  Google Scholar 

  • Shirsath, S., Sonawane, S., & Gogate, P. (2012). Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10–23.

    Article  CAS  Google Scholar 

  • Stillhart, C., & Kuentz, M. (2012). Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems. Journal of Pharmaceutical and Biomedical Analysis, 59, 29–37.

    Article  CAS  Google Scholar 

  • Sulaiman, A. Z., Ajit, A., Yunus, R. M., & Chisti, Y. (2011). Ultrasound-assisted fermentation enhances bioethanol productivity. Biochemical Engineering Journal, 54(3), 141–150.

    Article  CAS  Google Scholar 

  • Szabó, O. E., & Csiszár, E. (2013). The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydrate Polymers, 98(2), 1483–1489.

    Article  Google Scholar 

  • Tao, Y., García, J. F., & Sun, D.-W. (2014). Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 54(6), 817–835.

    Article  CAS  Google Scholar 

  • Tao, Y., Zhang, Z., & Sun, D.-W. (2014). Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrasonics Sonochemistry, 21(5), 1839–1848.

    Article  CAS  Google Scholar 

  • Vercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50(21), 6165–6171.

    Article  CAS  Google Scholar 

  • Wang, F., Zhang, H., Wang, J., Chen, G., Fang, X., Wang, Z., et al. (2012). Ultrasound irradiation promoted enzymatic transesterification of (R/S)-1-chloro-3-(1-naphthyloxy)-2-propanol. Molecules, 17(9), 10864–10874.

    Article  CAS  Google Scholar 

  • Winder, W., Aulik, D., & Rice, A. (1970). An ultrasonic method for direct and simultaneous determination of alcohol and extract content of wines. American Journal of Enology and Viticulture, 21(1), 1–11.

    CAS  Google Scholar 

  • Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218.

    Article  CAS  Google Scholar 

  • Yang, F., Gu, N., Chen, D., Xi, X., Zhang, D., Li, Y., et al. (2008). Experimental study on cell self-sealing during sonoporation. Journal of Controlled Release, 131(3), 205–210.

    Article  CAS  Google Scholar 

  • Yeo, S.-K., & Liong, M.-T. (2011). Effect of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-supplemented soymilk. Journal of Agricultural and Food Chemistry, 59(3), 885–897.

    Article  CAS  Google Scholar 

  • Yeo, S.-K., & Liong, M.-T. (2012). Effects and applications of sub-lethal ultrasound, electroporation and UV radiations in bioprocessing. Annals of Microbiology, 63(3), 813–824.

    Article  Google Scholar 

  • Yeo, S.-K., & Liong, M.-T. (2013). Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT--Food Science and Technology, 51(1), 289–295.

    Article  CAS  Google Scholar 

  • Zhang, Q.-A., Shen, Y., Fan, X.-H., & García Martín, J. F. (2015). Preliminary study of the effect of ultrasound on physicochemical properties of red wine. CyTA-Journal of Food, 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shikha Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ojha, K.S., O’Donnell, C.P., Kerry, J.P., Tiwari, B.K. (2016). Ultrasound and Food Fermentation. In: Ojha, K., Tiwari, B. (eds) Novel Food Fermentation Technologies. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42457-6_6

Download citation

Publish with us

Policies and ethics