Skip to main content

Pulsed Electric Field and Fermentation

  • Chapter
  • First Online:
Book cover Novel Food Fermentation Technologies

Part of the book series: Food Engineering Series ((FSES))

Abstract

This chapter provides a brief introduction to PEF technologies and its fundamentals. It also summarizes the potential applications of PEF treatments to improve the alcoholic fermentation of must, through the different studies that have been performed in this respect. These include the application of PEF to inactivate the microbial population of grape must and its potential as an alternative method to reduce or eliminate the addition of SO2 during the alcoholic fermentative process and ageing in bottles. It comprises, as well, the potential uses of PEF to increase the rate and the yield of mass transfer processes occurring during the vinification of red and rosé wines. In addition, the benefits of PEF on aiding the pressing process of grapes for white winemaking are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez, I., Condón, S., & Raso, J. (2006). Microbial inactivation by pulsed electric fields. In J. Raso & V. Heinz (Eds.), Pulsed electric field technology for the food industry (pp. 97–130). New York: Springer.

    Chapter  Google Scholar 

  • Amerine, M. A., & Roessler, E. B. (1983). Wines. Their sensory evaluation. New York: Freeman.

    Google Scholar 

  • Arias-Gil, M., Garde-Cerdán, T., & Ancín-Azpilicueta, C. (2007). Influence of addition of ammonium and different amino acids concentrations on nitrogen metabolism in spontaneous must fermentation. Food Chemistry, 103, 1312–1318.

    Article  CAS  Google Scholar 

  • Asavasanti, S., Ersus, S., Ristenpart, W., Stroeve, P., & Barrett, D. M. (2010). Critical electric field strengths of onion tissues treated by pulsed electric fields. Journal of Food Science, 75, 433–443.

    Article  CAS  Google Scholar 

  • Bell, S.-J., & Henschke, P. A. (2005). Implications of nitrogen nutrition for grapes, fermentation and wine. Australian Journal of Grape and Wine Research, 11, 242–295.

    Article  CAS  Google Scholar 

  • Bisson, J. B., Daulny, B., & Bertrand, A. (1980). Influence de la témperature de fermentation sur la composition du vin blanc sec. Conn Vigne Vin, 14, 195–202.

    CAS  Google Scholar 

  • Bolado-Rodríguez, S., Góngora-Nieto, M. M., Pothakamury, U., Barbosa-Cánovas, G. V., & Swanson, B. G. (2000). A review of nonthermal technologies. In J. Lozano, M. C. Añón, E. Parada, & G. V. Barbosa-Cánovas (Eds.), Trends in food engineering (pp. 227–265). Lancaster: Technomic Publishing.

    Google Scholar 

  • Bover-Cid, S., Izquierdo-Pulido, M., Mariné-Font, A., & Vidal-Carou, M. C. (2006). Biogenic mono-, di- and polyamine contents in Spanish wines and influence of a limited irrigation. Food Chemistry, 96, 43–47.

    Article  CAS  Google Scholar 

  • Brianceau, S., Turk, M., Vitrac, X., & Vorobiev, E. (2014). Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innovative Food Science & Emerging Technologies, 29, 2–8.

    Article  CAS  Google Scholar 

  • Campos, F. M., Couto, J. A., & Hogg, T. A. (2003). Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Journal of Applied Microbiology, 94, 167–174.

    Article  CAS  Google Scholar 

  • Cholet, C., Delsart, C., Petrel, M., Gontier, E., Grimi, N., L’Hyvernay, A., et al. (2014). Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: Impact on cell wall total tannins and polysaccharides. Journal of Agricultural and Food Chemistry, 62, 2925–2934.

    Article  CAS  Google Scholar 

  • Cocolin, L., Rantsiou, K., Iacumin, L., Zironi, R., & Comi, G. (2004). Molecular detection and identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in spoiled wines. Applied and Environmental Microbiology, 70, 1347–1355.

    Article  CAS  Google Scholar 

  • Del Llaudy, M. C., Canals, R., Canals, J. M., & Zamora, F. (2008). Influence of ripening stage and maceration length on the contribution of grape skins, seeds, and items to phenolic composition and astringency in wine-simulated macerations. European Food Research and Technology, 226, 377–374.

    Article  CAS  Google Scholar 

  • Delsart, C., Cholet, C., Ghidossi, R., Grimi, N., Gontier, E., Geny, L., et al. (2014). Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food and Bioprocess Technology, 7, 424–436.

    Article  CAS  Google Scholar 

  • Delsart, C., Grimi, N., Boussetta, N., Miot-Sertier, C., Ghidossi, R., Mietton-Peuchot, M., et al. (2015). Comparison of the effect of pulsed electric field or high voltage electrical discharge for the control of sweet white must fermentation process with the conventional addition of sulfur dioxide. Food Research International, 77, 718–724.

    Article  CAS  Google Scholar 

  • Donsì, F., Ferrari, G., Fruilo, M., & Pataro, G. (2010). Pulsed electric field-assisted vinification of Aglianico and Piedirosso grapes. Journal of Agricultural and Food Chemistry, 58, 11606–11615.

    Article  CAS  Google Scholar 

  • Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2, 109–130.

    Article  CAS  Google Scholar 

  • Elez-Martínez, P., Escolà, J., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2005). Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology, 22, 311–319.

    Article  CAS  Google Scholar 

  • Elez-Martínez, P., Escolà-Hernández, J., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2004). Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields. Journal of Food Protection, 67, 2596–2602.

    Google Scholar 

  • Escoffre, J. M., Portet, T., Wasungu, L., Teissie, J., Dean, D., & Rols, M. P. (2009). What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Molecular Biotechnology, 41, 286–295.

    Article  CAS  Google Scholar 

  • Etiévant, P. X. (1991). Wine. In H. Maarse (Ed.), Volatile compounds in foods and beverages (pp. 483–546). New York: Marcell Dekker.

    Google Scholar 

  • Ferreira, V., Escudero, A., Fernández, P., & Cacho, J. F. (1997). Changes in the profile of volatile compounds in wines stored under oxygen and their relationship with the browning process. European Food Research and Technology, 205, 392–396.

    CAS  Google Scholar 

  • Ferreira, V., López, R., & Cacho, J. F. (2000). Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 80, 1659–1667.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., & Ancín-Azpilicueta, C. (2006). Contribution of wild yeasts to the formation of volatile compounds in inoculated wine fermentations. European Food Research and Technology, 222, 15–25.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., & Ancín-Azpilicueta, C. (2008). Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during alcoholic fermentation. LWT--Food Science and Technology, 41, 501–510.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Arias-Gil, M., Marsellés-Fontanet, A. R., Ancín-Azpilicueta, C., & Martín-Belloso, O. (2007). Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control, 18, 473–479.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Arias-Gil, M., Marsellés-Fontanet, A. R., Salinas, M. R., Ancín-Azpilicueta, C., & Martín-Belloso, O. (2008). Study of the alcoholic fermentation of must stabilized by pulsed electric fields. Effect of SO2. In E. N. Koeffer (Ed.), Progress in food chemistry (pp. 73–103). New York: Nova.

    Google Scholar 

  • Garde-Cerdán, T., González-Arenzana, L., López, N., López, R., Santamaría, P., & López-Alfaro, I. (2013). Effect of different pulsed electric field treatments on the volatile composition of Graciano, Tempranillo and Grenache grape varieties. Innovative Food Science & Emerging Technologies, 20, 91–99.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., López, R., Garijo, P., González-Arenzana, L., Gutiérrez, A. R., López-Alfaro, I., et al. (2014). Application of colloidal silver versus sulfur dioxide during vinification and storage of Tempranillo red wines. Australian Journal of Grape and Wine Research, 20, 51–61.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Lorenzo, C., Carot, J. M., Esteve, M. D., Climent, M. D., & Salinas, M. R. (2010). Effects of composition, storage time, geographic origin and oak type on the accumulation of some volatile oak compounds and ethylphenols in wines. Food Chemistry, 122, 1076–1082.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Marsellés-Fontanet, A. R., Arias-Gil, M., Ancín-Azpilicueta, C., & Martín-Belloso, O. (2008a). Influence of SO2 on the evolution of volatile compounds through alcoholic fermentation of must stabilized by pulsed electric fields. European Food Research and Technology, 227, 401–407.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Marsellés-Fontanet, A. R., Arias-Gil, M., Ancín-Azpilicueta, C., & Martín-Belloso, O. (2008b). Effect of storage conditions on the volatile composition of wines obtained from must stabilized by PEF during ageing without SO2. Innovative Food Science & Emerging Technologies, 9, 469–476.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Marsellés-Fontanet, A. R., Arias-Gil, M., Martín-Belloso, O., & Ancín-Azpilicueta, C. (2007). Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields. Food Chemistry, 103, 771–777.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Martínez-Gil, A. M., Lorenzo, C., Lara, J. F., Pardo, F., & Salinas, M. R. (2011). Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chemistry, 124, 106–116.

    Article  CAS  Google Scholar 

  • Garde-Cerdán, T., Rodríguez-Mozaz, S., & Ancín-Azpilicueta, C. (2002). Volatile composition of aged wine in used barrels of French oak and of American oak. Food Research International, 35, 603–610.

    Article  Google Scholar 

  • Geveke, D. J., & Kozempel, M. F. (2003). Pulsed electric field effects on bacteria and yeast cells. Journal of Food Processing & Preservation, 27, 65–72.

    Article  Google Scholar 

  • Grimi, N., Lebovka, N. I., Vorobiev, E., & Vaxelaire, J. (2009). Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophysics, 4, 191–198.

    Article  Google Scholar 

  • Guadalupe, Z., & Ayestarán, B. (2008). Changes in the color components and phenolic content of red wines from Vitis vinifera L. Cv. Tempranillo during vinification and aging. European Food Research and Technology, 228, 29–38.

    Article  CAS  Google Scholar 

  • Guo, M., Jin, T. Z., Geveke, D. J., Fan, X., Sites, J. E., & Wang, L. (2014). Evaluation of microbial stability, bioactive compounds, physicochemical properties, and consumer acceptance of pomegranate juice processed in a commercial scale pulsed electric field system. Food and Bioprocess Technology, 7, 2112–2120.

    Article  CAS  Google Scholar 

  • Harrison, S. L., Barbosa-Cánovas, G. V., & Swanson, B. G. (1997). Saccharomyces cerevisiae structural changes induced by pulsed electric field treatment. LWT--Food Science and Technology, 30, 236–240.

    Article  CAS  Google Scholar 

  • Heinz, V., Álvarez, I., Angersbach, A., & Knorr, D. (2002). Preservation of liquid foods by high intensity pulsed electric fields-Basic concepts for process design. Trends in Food Science & Technology, 12, 103–111.

    Article  Google Scholar 

  • Heinz, V., & Knorr, D. (2000). Effect of pH, ethanol addition and high hydrostatic pressure on the inactivation of Bacillus subtilis by pulsed electric fields. Innovative Food Science & Emerging Technologies, 1, 151–159.

    Article  CAS  Google Scholar 

  • Herraiz, T. (1990). Formación de compuestos volátiles por distintas levaduras vínicas. Influencia del SO2 y de los hollejos utilizados durante la fermentación. Thesis, Universidad Complutense de Madrid, Madrid, Spain.

    Google Scholar 

  • Herraiz, T., Martín-Álvarez, P. J., Reglero, G., Herraiz, M., & Cabezudo, M. D. (1989). Differences between wines fermented with and without sulphur dioxide using various selected yeasts. Journal of the Science of Food and Agriculture, 49, 249–258.

    Article  CAS  Google Scholar 

  • Houtman, A. C., du Plessis, C. S. (1985). Influence du cépage et de la souche de levure sur la vitesse de fermentation et sur la concentration des composants volatils du vin. Bull O.I.V. 648–649, 234–246.

    Google Scholar 

  • Huang, K., Yu, I., Wang, W., Gai, L., & Wang, J. (2014). Comparing the pulsed electric field resistance of the microorganisms in grape juice: Application of the Weibull model. Food Control, 35, 241–251.

    Article  Google Scholar 

  • Hülsheger, H., Potel, J., & Niemann, E. G. (1983). Electric field effects on bacteria and yeast cells. Radiation and Environmental Biophysics, 22, 149–162.

    Article  Google Scholar 

  • Jackson, R. S. (2008). Wine science. Principles and applications. New York: Academic.

    Google Scholar 

  • Jordan, E. T., Collins, M., Terefe, J., Ugozzoli, L., & Rubio, T. (2008). Optimizing electroporation conditions in primary and other difficult-to-transfect cells. Journal of Biomolecular Techniques, 9, 328–334.

    Google Scholar 

  • Koumanov, A., Ladenstein, R., & Karshikoff, A. (2001). Electrostatic interactions in proteins: Contribution to structure-function relationships and stability. Recent Research Development in Protein Engineering, 1, 123–148.

    CAS  Google Scholar 

  • Lambrechts, M. G., & Pretorious, I. S. (2000). Yeast and its importance to wine aroma-A review. South African Journal of Enology and Viticulture, 21, 97–129.

    CAS  Google Scholar 

  • Lehtonen, P. (1996). Determination of amines and amino acids in wine-A review. American Journal of Enology and Viticulture, 47, 127–133.

    CAS  Google Scholar 

  • Li, H., Guo, A., & Wang, H. (2008). Mechanism of oxidative browning of wine. Food Chemistry, 108, 1–13.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek, 76, 317–331.

    Article  CAS  Google Scholar 

  • López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2008a). Application of pulsed electric fields for improving the maceration process during vinification of red wine: Influence of grape variety. European Food Research and Technology, 227, 1099–1107.

    Article  CAS  Google Scholar 

  • López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2008b). Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science & Emerging Technologies, 9, 477–482.

    Article  CAS  Google Scholar 

  • López-Alfaro, I., González-Arenzana, L., López, N., Santamaría, P., López, R., & Garde-Cerdán, T. (2013). Pulsed electric field treatment enhanced stilbene content in Graciano, Tempranillo and Grenache grape varieties. Food Chemistry, 141, 3759–3765.

    Article  CAS  Google Scholar 

  • López-Giral, N., González-Arenzana, L., González-Ferrero, C., López, R., Santamaría, P., López-Alfaro, I., et al. (2015). Pulsed electric field treatment to improve the phenolic compound extraction from Graciano, Tempranillo and Grenache grape varieties during two vintages. Innovative Food Science & Emerging Technologies, 28, 31–39.

    Article  CAS  Google Scholar 

  • Loureiro, V., & Malfeito-Ferreira, M. (2003). Spoilage yeast in the wine industry. International Journal of Food Microbiology, 86, 23–50.

    Article  CAS  Google Scholar 

  • Luengo, E., Franco, E., Ballesteros, F., Álvarez, I., & Raso, J. (2014). Winery trial on application of pulsed electric fields for improving vinification of Garnacha grapes. Food and Bioprocess Technology, 7, 1457–1464.

    Article  CAS  Google Scholar 

  • Lustrato, G., Alfano, G., Belli, C., Grazia, L., Lorizzo, M., Maiuro, L., et al. (2003). Controlling grape must fermentation in early winemaking phases: The role of electrochemical treatment. Journal of Applied Microbiology, 95, 1087–1095.

    Article  CAS  Google Scholar 

  • Margheri, G., Tonon, D., & Trepin, P. (1980). I polifenoli dei vini bianchi come potenziali di ossidazione. Vignevini, 7, 35–44.

    CAS  Google Scholar 

  • Markowicz-Bastos, D., Monaro, E., Siguemoto, E., & Séfora, M. (2012). Maillard reaction products in processed food: Pros and cons. In B. Valdez (Ed.), Food industrial processes—Methods and equipment (pp. 281–300). Rijeka: InTech-Open Access.

    Google Scholar 

  • Marsellés-Fontanet, R., & Martín-Belloso, O. (2007). Optimization and validation of PEF processing conditions to inactivate enzymes of grape juice. Journal of Food Engineering, 83, 452–462.

    Article  CAS  Google Scholar 

  • Marsellés-Fontanet, A. R., Puig, A., Olmos, P., Mínguez-Sanz, S., & Martín-Belloso, O. (2009). Optimising the inactivation of grape juice spoilage organisms by pulse electric fields. International Journal of Food Microbiology, 130, 159–165.

    Article  CAS  Google Scholar 

  • Marsellés-Fontanet, A. R., Puig-Pujol, A., Olmos, P., Mínguez-Sanz, S., & Martín-Belloso, O. (2013). A comparison of the effects of pulsed electric field and thermal treatments on grape juice. Food and Bioprocess Technology, 6, 978–987.

    Article  CAS  Google Scholar 

  • Mayén, M., Barón, R., Mérida, J., & Medina, M. (1997). Changes in phenolic compounds during accelerated browning in white wines from cv. Pedro Ximenez and cv. Baladi grapes. Food Chemistry, 58, 89–95.

    Article  Google Scholar 

  • McDonald, C. J., Lloyd, S. W., Vitale, M. A., Petersson, K., & Innings, F. (2000). Effects of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm. Journal of Food Science, 65, 984–989.

    Article  CAS  Google Scholar 

  • Mosqueda-Melgar, J., Elez-Martínez, P., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2008). Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: A review. Critical Reviews in Food Science and Nutrition, 48, 747–759.

    Article  Google Scholar 

  • Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martin-Belloso, O. (2007). Influence of treatment time and pulse frequency on Salmonella enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. International Journal of Food Mirobiology, 117, 192–200.

    Article  CAS  Google Scholar 

  • Ness, W. D., Adler, J. H., & Ness, W. R. (1984). A structure-function correlation for fatty acids in Saccharomyces cerevisiae. Experimental Mycology, 8, 55–62.

    Article  Google Scholar 

  • Nichenametla, S. N., Tarusicio, T. G., Barney, D. L., & Exon, J. H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46, 161–183.

    Article  CAS  Google Scholar 

  • O’Connor-Cox, E. S. C., & Ingledew, W. M. (1989). Wort nitrogenous sources. Their use by brewing yeasts: A review. Journal of the American Society of Brewing Chemists, 47, 102–108.

    Google Scholar 

  • Ough, C. S., & Stashak, R. M. (1974). Further studies on proline concentration in grapes and wines. American Journal of Enology and Viticulture, 25, 7–12.

    CAS  Google Scholar 

  • Plata, C., Millán, C., Mauricio, J. C., & Ortega, J. M. (2003). Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiology, 20, 217–224.

    Article  CAS  Google Scholar 

  • Pozo-Bayón, M. A., Alegría, E. G., Polo, M. C., Tenorio, C., Martín-Álvarez, P. J., Calvo de la Banda, M. T., et al. (2005). Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. Journal of Agricultural and Food Chemistry, 53, 8729–8735.

    Article  CAS  Google Scholar 

  • Praporscic, I., Lebovka, N., Vorobiev, E., & Mietton-Peuchot, M. (2007). Pulsed electric field enhanced expression and juice quality of white grapes. Separation and Purification Technology, 52, 520–526.

    Article  CAS  Google Scholar 

  • Puértolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010a). Potential applications of PEF to improve red wine quality. Trends in Food Science & Technology, 21, 247–255.

    Article  CAS  Google Scholar 

  • Puértolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010b). Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal of Food Engineering, 98, 120–125.

    Article  CAS  Google Scholar 

  • Puértolas, E., López, N., Condón, S., Raso, J., & Álvarez, I. (2009). Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology, 130, 49–55.

    Article  CAS  Google Scholar 

  • Puértolas, E., Saldaña, G., Álvarez, I., & Raso, J. (2011). Experimental design approach for the evaluation of anthocyanin content of rosé wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chemistry, 126, 1482–1487.

    Article  CAS  Google Scholar 

  • Qin, G. H., & Meng, Z. Q. (2009). Effects of sulphur dioxide derivatives on expression of oncogenes and tumour suppressor genes in human bronchial epithelial cells. Food and Chemical Toxicology, 47, 734–744.

    Article  CAS  Google Scholar 

  • Quain, E. D. (1988). Studies on yeast physiology impact fermentation performance and product quality. Journal of the Institute of Brewing, 95, 315–323.

    Article  Google Scholar 

  • Ramey, D. D., & Ough, C. S. (1980). Volatile ester hydrolysis or formation during storage of model solutions and wines. Journal of Agricultural and Food Chemistry, 28, 928–934.

    Article  CAS  Google Scholar 

  • Rapp, A., & Mandery, H. (1986). Wine aroma. Experientia, 42, 873–884.

    Article  CAS  Google Scholar 

  • Raso, J., Calderón, M. L., Góngora, M., Barbosa-Cánovas, G., & Swanson, B. G. (1998). Inactivation of mold Ascospores and Conidiospores suspended in fruit juices by pulsed electric fields. LWT--Food Science and Technology, 31, 668–672.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (2006). Handbook of enology (The microbiology of wine and vinifications 2nd ed., Vol. 1). Chichester: Wiley.

    Book  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine, 20, 933–956.

    Article  CAS  Google Scholar 

  • Rojas, V., Gil, J. V., Piñaga, F., & Manzanares, P. (2003). Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology, 86, 181–188.

    Article  CAS  Google Scholar 

  • Romano, P., Fiore, C., Paraggio, M., Caruso, M., & Capece, A. (2003). Function of yeast species and strains in wine flavour. International Journal of Food Microbiology, 86, 169–180.

    Article  CAS  Google Scholar 

  • Sacchi, K. L., Bisson, L. F., & Adams, D. (2005). A review of the effect of winemaking techniques on phenolic extraction in red wines. American Journal of Enology and Viticulture, 56, 197–206.

    CAS  Google Scholar 

  • Salvia-Trujillo, L., Morales-de la Peña, M., Rojas-Graü, M. A., & Martín-Belloso, O. (2011). Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control, 22, 1639–1646.

    Article  CAS  Google Scholar 

  • Santos, M. C., Nunes, C., Saraiva, J. A., & Coimbra, M. A. (2012). Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. European Food Research and Technology, 234, 1–12.

    Article  CAS  Google Scholar 

  • Saulis, G. (2010). Electroporation of cell membranes: The fundamental effects of pulsed electric fields in food processing. Food Engineering Reviews, 2, 52–73.

    Article  Google Scholar 

  • Selma, M. V., Salmerón, M. C., Malerov, M., & Fernández, P. S. (2004). Control of Lactobacillus plantarum and Escherichia coli by pulsed electric fields in MRS Broth, Nutrient Broth and orange–carrot juice. Food Microbiology, 21, 519–525.

    Article  Google Scholar 

  • Sen Gupta, B., Masterson, F., & Magee, T. R. A. (2003). Inactivation of E. coli K12 in apple juice by high voltage pulsed electric field. European Food Research and Technology, 217, 434–437.

    Article  CAS  Google Scholar 

  • Silla-Santos, M. H. (1996). Biogenic amines: Their importance in foods. International Journal of Food Microbiology, 29, 213–231.

    Article  CAS  Google Scholar 

  • Simpson, R. F. (1979). Some important aroma components of white wines. Food Technology in Australia, 31, 516–522.

    CAS  Google Scholar 

  • Singleton, V. L. (1987). Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications. American Journal of Enology and Viticulture, 38, 69–77.

    CAS  Google Scholar 

  • Snowdon, E. M., Bowyer, M. C., Grbin, P. R., & Bowyer, P. K. (2006). Mousy off-flavour: A review. Journal of Agricultural and Food Chemistry, 54, 6465–6474.

    Article  CAS  Google Scholar 

  • Stead, D. (1995). The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. Journal of Applied Bacteriology, 78, 82–87.

    Article  CAS  Google Scholar 

  • Suárez, R., Suárez-Lepe, J. A., Morata, A., & Calderón, F. (2007). The production of ethylphenols in wine by yeast of the genera Brettanomyces and Dekkera: A review. Food Chemistry, 102, 10–21.

    Article  CAS  Google Scholar 

  • Teissié, J., Eynard, N., Vernhes, M. C., Bénichou, A., Ganeva, V., Galutzov, B., et al. (2002). Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry, 55, 107–112.

    Article  Google Scholar 

  • Timbo, B., Koehler, K. M., Wolyniak, C., & Klontz, K. C. (2004). Sulphites-a food and drug administration review of recalls and reported adverse events. Journal of Food Protection, 67, 1806–1811.

    Google Scholar 

  • Timmermans, R. A. H., Ninerop Grood, M. N., Nederhoff, A. L., van Boekel, M. A. J. S., Matser, A. M., & Mastwijk, H. C. (2014). Pulsed electric field processing of different fruit juices: Impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. International Journal of Food Microbiology, 173, 105–111.

    Article  CAS  Google Scholar 

  • Toepfl, S., Heinz, V., & Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing, 46, 537–546.

    Article  CAS  Google Scholar 

  • Vally, H., & Thompson, P. J. (2003). Allergic and asthmatic reactions to alcoholic drinks. Addiction Biology, 8, 3–11.

    Article  CAS  Google Scholar 

  • Vega-Mercado, H., Martín-Belloso, O., Qin, B. L., Chang, F. J., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., et al. (1997). Non-thermal food preservation: Pulsed electric fields. Trends in Food Science & Technology, 81, 151–157.

    Article  Google Scholar 

  • Vega-Mercado, H., Pothakamury, U. R., Chang, F. J., Barbosa-Cánovas, G. V., & Swanson, B. (1996). Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Research International, 29, 117–121.

    Article  CAS  Google Scholar 

  • Yang, R. J., Li, S. Q., & Zhang, Q. H. (2004). Effects of pulsed electric fields on the activity of enzymes in aqueous solution. Journal of Food Science, 69, 241–248.

    Google Scholar 

  • Zhao, W., Yang, R., Lu, R., Tang, Y., & Zhang, W. (2007). Investigation of the mechanisms of pulsed electric fields on inactivation of enzyme: Lysozyme. Journal of Agricultural and Food Chemistry, 55, 9850–9858.

    Article  CAS  Google Scholar 

  • Zhong, K., Wu, J., Wang, Z., Chen, F., Liao, X., Hu, X., et al. (2007). Inactivation kinetics and secondary structural change of PEF-treated POD and PPO. Food Chemistry, 100, 115–123.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., & Riemann, F. (1974). Dielectric breakdown of cell membranes. Biophysical Journal, 14, 881–899.

    Article  CAS  Google Scholar 

  • Zulueta, A., Esteve, M. J., Frasquet, I., & Frígola, A. (2007). Fatty acid profile changes during orange juice-milk beverage processing by high-pulsed electric field. European Journal of Lipid Science and Technology, 109, 25–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Ministerio de Ciencia y Tecnología through the project AGL2002-04399-C02-02 supported this work. T. G.-C. wishes to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Gobierno de La Rioja and FEDER of the European Community for the DOC-INIA contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ancín-Azpilicueta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garde-Cerdán, T., Arias, M., Martín-Belloso, O., Ancín-Azpilicueta, C. (2016). Pulsed Electric Field and Fermentation. In: Ojha, K., Tiwari, B. (eds) Novel Food Fermentation Technologies. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42457-6_5

Download citation

Publish with us

Policies and ethics